Epidemiologic Surveillance after Natural Disaster

A Study Guide for C280-BC08

Prepared for the Disaster Management Center by Josefa Ippolito-Shepherd, Richard Hansen and Don Schramm

To be used in conjunction with
Pan American Health Organization Scientific Publication No. 420

PAN AMERICAN HEALTH ORGANIZATION
Pan American Sanitary Bureau, Regional Office of the
WORLD HEALTH ORGANIZATION
525 Twenty-third Street, N.W.
Washington, D.C. 20037, U.S.A.

For permission to reprint, contact:
Disaster Management Center
University Of Wisconsin-Madison
Engineering Professional Development
432 North Lake Street
Madison, Wisconsin 53706
608-262-2061

This Study Guide is one in a series of five prepared by the University of Wisconsin-Extension, Department of Engineering and Applied Science, Disaster Management Center with financial support from the Pan American Health Organization (PAHO). This self-study series is designed to use scientific publications of the Pan American Health Organization as texts for the study of health-related issues in disaster management. Each module of the series includes a PAHO text, a study guide, pretest, self-assessment tests and a final examination.

Legal Notice

This report was prepared by the University of Wisconsin (UW). Neither the UW nor any of its officers or employees makes any warranty, express or limited, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement by the UW.

Five self-study courses, based on Pan American Health Organization scientific publications, are now available. They are designed to assist in the development of disaster management plans or the improvement of existing plans. These publications and their companion study courses are entitled:

Acknowledgements

The Disaster Management Center at the University of Wisconsin-Extension thanks the Pan American Health Organization for early support of course development. In particular, Dr. Claude de Ville de Goyet and Ellen Wasserman deserve special recognition for their understanding of this innovative educational process. In addition, the thoughtful review by Dr. Karl Western was of great help in the preparation of this guide. At the University of Wisconsin-Extension, Linda Hook, Darrell Petska, Susan Kummer, and Lolette Guthrie must be thanked for their efforts in editing, design and production. The course development process is never over, and each of these people understands that very well.
Foreward

In the event of a natural disaster, a nation, region, community or individual will return to normal more quickly if there has been advance planning on the use of available resources.

A plan to mobilize a country’s resources for disaster management is a complex undertaking, as illustrated below.

The health sector must cooperate with other groups involved in the overall plan. In addition, they must work within the framework and priorities established by those in higher authority. Within the overall plan is a section dealing specifically with health and subplans for various units of the health sector. (See illustration.)

Organization of a National Emergency Committee

* NGO = Nongovernmental organizations (also called voluntary agencies)
Introduction

How to Get Started

This self-study course is designed to assist those responsible for meeting the health needs of people following a sudden natural disaster. It is designed for health care professionals, paraprofessionals, and those in training, as well as government personnel, and representatives of private voluntary agencies.

This course deals with disasters caused by destructive storms, earthquakes, volcanic eruptions, and sea surges. Specifically, it covers the effects of such disasters on environmental health.

The course is based on the scientific publication, *Epidemiologic Surveillance after Natural Disaster*, published by the Pan American Health Organization.

The procedure of self-study is:

- Complete and score the Pretest. Do not be disappointed if you have a low score. If you had a high score, you probably do not need this course.
- Read the Outline of Content, to get a general idea of what is covered in the course.
- Read the Learning Objectives, to get a general idea of what you are expected to learn from the course.
- Turn to Lesson 1: An Overview.
 - Review the Study Guide section for a brief description of the lesson and any special suggestions on how to study.
 - Again read the Learning Objectives.
 - Carry out the Learning Activities listed.
 - Complete the Self-Assessment Test at the end of the lesson and score it using the answer key provided. If you have not answered most of the questions correctly, re-study the lesson.

If you score well on the Self-Assessment Test, proceed to Lesson 2.

Continue to study each lesson and complete each Self-Assessment Test until you have finished the course of study. When you have completed all the Self-Assessment Tests to your satisfaction, you should request the Final Examination Package. This will include the Final Exam and a Disaster Development Problem.
Pretest

Multiple Choice
Circle the correct answer:

1. Surveillance of communicable diseases following a disaster is complicated by:
 a. persistence of many serious communicable diseases
 b. lack of baseline data
 c. lack of writing materials
 d. all of the above
 e. a and b

2. Appropriate assessment of rumors is possible through:
 a. early epidemiologic involvement and prompt field investigation
 b. education of concerned parties about appropriate ways to interpret and respond to rumors
 c. weekly reports
 d. a and c
 e. a and b

3. An infectious disease agent can be brought into a disaster area by:
 a. a relief worker
 b. transport vehicle
 c. supplies
 d. all of the above
 e. a and c

4. For visual appreciation of disease trends, it is most helpful to use:
 a. maps
 b. graphs
 c. columns of numbers
 d. figures
 e. a and b

5. Efforts to provide feedback to the field from the central office may be frustrated by limitations of:
 a. diagnostic resources
 b. epidemiologic human resources
 c. communications and transport
 d. all of the above
 e. b and c

6. Mass administration of antibiotics is not suitable because:
 a. antibiotics are not effective against viral diseases (i.e. influenza)
 b. no single antibiotic provides adequate coverage against all potential bacterial or rickettsial diseases
 c. antibiotics have to be taken indefinitely to prevent infection for a susceptible organism
 d. they can induce allergic reactions and toxic effects
 e. all of the above

7. Diseases potentially introduced into areas affected by disaster relief workers are:
 a. new strains of influenza
 b. diseases borne by insect vectors
 c. leukemia
 d. all of the above
 e. a and b

8. Emergency water supply operations should ensure:
 a. amount of daily water consumption needed
 b. water disinfection, protection, storage, and quality
 c. protection of wells
 d. all of the above
 e. b and c

True/False
Indicate T or F:

9. Following a disaster it is often best to discontinue routine public health services and use the people and money for emergency public health programs directed to specific problems.

10. After a disaster, the surveillance of all possible diseases is usually essential.

11. Standardized case definitions and/or symptom complexes need to be incorporated in predisaster training.

12. Epidemics can usually be avoided after a disaster because people congregate
for food, safety and medical attention and consequently can be organized to avoid risks.

___13. Factors which contribute to the risk of communicable disease after a manmade disaster are very different from those after a natural disaster.

___14. Regular telephone or mail surveys of a sample of physicians can yield a good appreciation of actual levels of diseases in the population.

___15. Systematic confirmation of all suspected cases of the diseases subject to international notification and/or those of selected emphasis in surveillance is a high priority during and after disasters.

___16. If children in an area affected by a disaster have not been vaccinated previously, an emergency immunization program should be developed.

___17. Relief administrators usually give high priority to environmental health measures that prevent communicable diseases.

___18. Following a disaster, most epidemics are detected because medical care improves.

___19. International relief organizations - which provide personnel and supplies following a disaster usually view epidemiologic surveillance and control as a national responsibility.

___20. Most developing countries have infection control problems in their hospitals.

___21. After a disaster it is necessary for relief authorities to set up a separate postdisaster surveillance/assessment system.

___22. The most prevalent diseases in populations stricken by disaster may be controlled by mass immunization.

___23. Certain areas, such as permanent encampments of displaced persons, may require indefinite special surveillance.

___24. Serious outbreaks of communicable disease very rarely occur after natural disasters unless people are placed in camps.

___25. Incoming surveillance notifications should be carefully filed so they can be tabulated at the end of the reporting period.

<table>
<thead>
<tr>
<th>Answer Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. b</td>
</tr>
<tr>
<td>2. e</td>
</tr>
<tr>
<td>3. d</td>
</tr>
<tr>
<td>4. e</td>
</tr>
<tr>
<td>5. d</td>
</tr>
<tr>
<td>6. e</td>
</tr>
<tr>
<td>7. e</td>
</tr>
<tr>
<td>8. d</td>
</tr>
<tr>
<td>10. F</td>
</tr>
<tr>
<td>11. T</td>
</tr>
<tr>
<td>12. F</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Outline of content

Lesson 1 - Risk Factors for Communicable Diseases after Disasters
• Epidemiologic Factors that Determine the Potential of Communicable Disease Transmission
• The Relative Risk of Communicable Disease after Natural versus Manmade Disasters
• Postdisaster Experience with Communicable Disease

Lesson 2 - Postdisaster Potential of Communicable Disease Epidemics
• Exposure of Susceptibles to Endemic Communicable Disease
• Increases in Levels of Endemic Communicable Disease in Local Populations
• Special Problems with Communicable Disease in Encamped Populations
• Communicable Diseases after Disasters

Lesson 3 - Setting Up Systems for the Surveillance of Communicable and Selected Noncommunicable Diseases
• Surveillance of Diseases between Disasters under Normal Conditions
• Surveillance Sources Following Disaster
• Diseases to Include in Surveillance
• The Collection, Interpretation and Utilization of Data
• Providing Feedback to the Field from the Central Level

Lesson 4 - Operational Aspects of Disease Surveillance after Disaster
• Field Investigation of Rumors and Reports of Communicable Disease
• Gaining Access to Laboratories to Obtain Definitive Diagnosis and Support for Epidemiologic Investigations
• Presenting Epidemiologic Information to Decision Makers Surveillance during and after the Recovery Phase

Lesson 5 - The Control of Communicable Disease after Disaster
• Environmental Health Management
• Immunization
• Chemotherapy
• Quarantine and Isolation

Course objectives

Lesson 1 - Risk Factors for Communicable Diseases after Disasters
• Identify risk factors for communicable diseases after natural and manmade disasters in both developed and developing countries.
• Gain an overall understanding of postdisaster experience with communicable diseases.

Lesson 2 - Postdisaster Potential of Communicable Disease Epidemics
• Recognize the potential of epidemic outbreaks of communicable diseases after disaster.
• Recognize the different ways in which susceptible individuals may be exposed to endemic diseases
• Know the risks involved in encamped populations.
• Know the sanitary requirements for encamped populations.
Lesson 3 - Setting Up Systems for the Surveillance of Communicable and Selected Noncommunicable Diseases
Recognize the appropriate organization of surveillance systems.
Identify diseases to include in a surveillance system.
Recognize the appropriate method for the collection, interpretation and utilization of data.
Recognize the importance of feedback to field workers.

Lesson 4 - Operational Aspects of Disease Surveillance after Disaster
- Become aware of the need to investigate rumors and reports of communicable disease outbreaks.
- Recognize the importance of using laboratories in disaster situations.
- Understand the importance of presenting epidemiologic information to decision makers.
- Recognize the importance of surveillance during and after the recovery phase.

Lesson 5 - The Control of Communicable Disease after Disaster
- Become knowledgeable of issues in the management of environmental health.
- Identify factors to be considered when carrying out immunizations during emergencies.
- Recognize issues to be considered in chemotherapy during emergencies.
- Become familiar with issues involved in quarantine and isolation.
Lesson 1 - Risk Factors for Communicable Diseases after Disasters

Study Guide
This lesson discusses epidemiologic factors that may determine the potential transmission of communicable diseases after natural and manmade disasters. It also provides an account of postdisaster experience with communicable diseases.

Learning Objectives
Identify risk factors for communicable diseases after natural and manmade disasters in both developed and developing countries.
Gain an overall understanding of postdisaster experience with communicable diseases.

Learning Activities
Read pages 3-12 in the manual.
Study, but do not memorize, Table 1 in the manual.

Evaluation
Complete the Self-Assessment Test.

Notes
Lesson 1 - Self Assessment Test

Multiple Choice

Circle the correct answer:

1. Increased population density is a critical factor in the transmission of diseases spread by:
 a. water
 b. respiratory route
 c. food
 d. person-to-person contact
 e. b and d

True/False

Indicate T or F:

2. Improved vaccination programs after disasters will prevent the occurrence of vaccine-preventable diseases.

3. In most of Latin America and the Caribbean, the classical diseases associated with disasters have declined or disappeared.

4. In a village with no electric power and where there are promiscuous defecation habits and contaminated sources of water in normal times, an increased risk from communicable diseases is likely after a disaster.

5. The lack of baseline surveillance data between disasters in developing countries makes no difference in confirming increases of certain diseases.

6. The risk of a spread of communicable diseases after a disaster is about equal in developed and developing countries.

7. Ecological changes due to a disaster may in some cases reduce the risk of the spread of communicable disease.

8. Laboratory diagnostic facilities for detecting communicable diseases after disasters are not essential since the clinician or epidemiologist can easily diagnose most communicable diseases.

<table>
<thead>
<tr>
<th>Answer Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. e</td>
</tr>
<tr>
<td>2. F</td>
</tr>
<tr>
<td>3. T</td>
</tr>
<tr>
<td>4. F</td>
</tr>
<tr>
<td>5. F</td>
</tr>
<tr>
<td>6. F</td>
</tr>
<tr>
<td>7. F</td>
</tr>
<tr>
<td>8. F</td>
</tr>
</tbody>
</table>
Lesson 2 - Postdisaster potential of communicable disease epidemics

Study Guide
This lesson discusses the potential of epidemic outbreaks of communicable disease after disaster. It defines three ways in which susceptible persons may be exposed to endemic disease, which may cause subsequent epidemics or increased levels of endemic communicable disease. It also discusses special problems that may be encountered in encamped populations and measures that may prevent communicable diseases. Also, it summarizes the epidemic potential of selected communicable diseases following disasters in Latin America and the Caribbean.

Learning Objectives
- Recognize the potential of epidemic outbreaks of communicable diseases after disaster.
- Recognize the different ways in which susceptible individuals may be exposed to endemic diseases.
- Know the risks involved in encamped populations.
- Know the sanitary requirements for encamped populations.

Learning Activities
- Read pages 13-17 in the manual.
- Read, but do not memorize, Table 2 in the manual.
- Read, but do not memorize, Annex 4 in the manual.

Evaluation
Complete the Self-Assessment Test.

Notes
Lesson 2 - Self-Assessment Test

Multiple Choice
Circle the correct answer:

1. Sanitation requirements during disaster relief operations require that the tent camp sites be:
 a. on a slope of land with a nature of soil that favors easy drainage
 b. protected from adverse weather conditions
 c. away from mosquito breeding sites, refuse dumps, and commercial and industrial zones
 d. all of the above
 e. a and c

2. Which of the following diseases does not have a high epidemic potential following a disaster in Latin America or the Caribbean:
 a. diarrhea
 b. viral hepatitis A
 c. viral hepatitis B
 d. influenza
 e. typhoid fever

True/False
Indicate T or F:

3. In developing countries, epidemics are common following natural disasters.
 T

4. In general, rural populations migrating to cities are more susceptible to communicable diseases than urban populations migrating to rural areas.
 F

5. In an encampment, if an epidemic can be avoided for the first two weeks following a disaster, the risk becomes much less.
 T

6. Foreign voluntary relief teams are seldom at risk from communicable diseases since their immunization levels are high and they take appropriate precautions.
 F

7. If a disease has never been reported in a disaster area, an epidemiologist can assume there is no need for surveillance related to that disease.
 F

8. Reports of communicable diseases should be expected to increase during medical relief periods following a disaster whether there is an actual increase or not.
 T

Answer Key

| 1. d |
| 2. e |
| 3. F |
| 4. T |
| 5. F |
| 6. F |
| 7. F |
| 8. T |
Lesson 3 - Setting up systems for the surveillance of communicable and selected noncommunicable diseases

Study Guide
This lesson presents the appropriate organization of surveillance systems. It discusses the surveillance of diseases in normal times, between disasters; reporting sources following disaster; diseases to include in the surveillance systems; the collection, interpretation and utilization of data; and central level feedback to field offices.

Learning Objectives
- Recognize the appropriate organization of surveillance systems.
- Identify diseases to include in a surveillance system.
- Recognize the appropriate method for the collection, interpretation and utilization of data.
- Recognize the importance of feedback to field workers.

Learning Activities
- Study, but do not memorize Figures 1, 2, 3, 4, and 5 in the manual.
- Study, but do not memorize Annexes 1, 2, and 3 in the manual.

Evaluation
Complete the Self-Assessment Test.

Notes
Lesson 3 - Self Assessment Test

Multiple Choice
Circle the correct answer:

1. The primary responsibility to collate and interpret weekly totals from surveillance reports belongs to:
 a. the epidemiologist
 b. the family physician
 c. reporting units
 d. relief workers
 e. none of the above

2. When communications and laboratory services are good, the communicable disease control officer learns of urgent problems through:
 a. weekly report forms
 b. telephone
 c. laboratory
 d. a and b
 e. b and c

3. Under less urgent conditions or in long-term relief efforts, the reporting week should end on:
 a. a weekend
 b. Sunday
 c. Friday
 d. Monday
 e. none of the above

4. Continued reporting of negative findings permits:
 a. continued assessment of the number of reporting units
 b. gathering information on the absence of a disease
 c. seeing how well forms are completed
 d. a and c
 e. a and b

True/False
Indicate T or F:

5. Before international relief workers select communicable diseases for surveillance and clinical criteria for case reporting, they should consult a national epidemiologist and the health relief coordinator of the affected country.

6. Diagnostic criteria in laboratory work after disaster needs to be flexible.

7. Indirect measures (i.e., school and industrial absenteeism) may be useful in the surveillance of certain diseases.

8. Health providers who report for duty after disasters do not need to be informed about diagnostic criteria to be used.

9. The guiding principle of reporting is to keep the number of diseases under surveillance and tabulation to an absolute minimum.

10. The deadline for receipt of notifications after a disaster should be firm and immutable.

11. Feedback to the field from the central office may be accomplished by providing weekly summaries.

12. Very exotic and fatal, or uncommon diseases are not reported frequently to health authorities, while common communicable diseases are reported.

13. Disease surveillance is essentially concerned with the gathering of information that is necessary for rational planning, operation and evaluation of activities.

Answer Key

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c</td>
<td>8</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>9</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>10</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>11</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>12</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>13</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson 4 - Operational aspects of disease surveillance after disaster

Study Guide
This lesson discusses four major steps in communicable disease surveillance after disaster: (1) carrying out field investigation of rumors and reports of outbreaks of disease; (2) gaining access to laboratories to obtain definitive diagnoses and support for epidemiologic investigations; (3) presenting epidemiologic information to decision makers; and (4) guaranteeing surveillance during and after the recovery phase.

Learning Objectives
- Become aware of the need to investigate rumors and reports of communicable disease outbreaks.
- Recognize the importance of using laboratories in disaster situations.
- Understand the importance of presenting epidemiologic information to decision makers.
- Recognize the importance of surveillance during and after the recovery phase.

Learning Activities
- Read pages 41-52 in the manual.
- Study, but do not memorize, Table 3 in the manual.
- Study, but do not memorize, Annex 3 in the manual.

Note: Reference to Annex 3 is correct here. It ought to be corrected on page 50 in the manual.

Evaluation
Complete the Self-Assessment Test.

Notes
Lesson 4 - Self-Assessment Test

Multiple Choice

Circle the correct answer:

1. The likelihood of releasing mistaken or exaggerated information to the media will be diminished if:
 a. seasoned health workers lead relief teams
 b. there are briefings about the policy of dealing with the media
 c. there is an open relationship between the media and the relief coordinator
 d. all of the above
 e. b and c

2. Rumors may be spread by:
 a. relief headquarters staff
 b. radio and other media
 c. field relief workers
 d. all of the above
 e. b and c

True/False

Indicate T or F:

3. Epidemiologic surveillance activities related to disasters should be phased out as soon as possible following a disaster and normal control efforts resumed.

4. The national relief coordinator usually has full authority to institute epidemiologic control measures when they are required.

5. Reporters often assume that information provided by a doctor or nurse on the scene is more accurate and reliable than that in releases from official sources.

6. When the epidemiologist investigating a rumor encounters patients with symptoms compatible with the disease in question, it is usually not necessary to collect specimens for diagnosis.

7. If the central epidemiologist is not satisfied with the field staff's ability to investigate a rumor, one or more epidemiologists should be sent to the field.

8. The investigation of rumors requires specialized skills most epidemiologists do not have.

9. Mistaken diagnosis of a communicable disease may be given because of lack of experience of the medical staff.

10. In reporting epidemiologic information to higher authorities the epidemiologist should present the preferred solution in nontechnical terms, since the decision makers do not have the background knowledge to choose from a number of alternatives.

11. Political issues and the nature of public outcry, rather than public health priorities, often have determined the perceived severity of a rumor or report.

Answer Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. d</td>
<td>7. T</td>
</tr>
<tr>
<td>2. d</td>
<td>8. T</td>
</tr>
<tr>
<td>3. F</td>
<td>9. T</td>
</tr>
<tr>
<td>4. F</td>
<td>10. F</td>
</tr>
<tr>
<td>5. T</td>
<td>11. T</td>
</tr>
<tr>
<td>6. F</td>
<td></td>
</tr>
</tbody>
</table>
Lesson 5 - The control of communicable disease after disaster

Study Guide
This lesson discusses four major areas related to the control of communicable disease after disaster: environmental health management, immunization, chemotherapy, and quarantine and isolation.

Learning Objectives
• Become familiar with key concepts in the management of environmental health.
• Identify factors to be considered when carrying out immunizations during emergencies.
• Recognize pros and cons to be considered in chemotherapy during emergencies. Become familiar with issues involved in quarantine and isolation.

Learning Activities
• Read pages 53-60 in the manual.
• Study, but do not memorize, Annex 5 in the manual.
• Become familiar with publications No. 27 and No. 58 listed under References in the manual.

Evaluation
Complete the Self-Assessment Test.

Notes
Lesson 5 - Self-Assessment Test

Multiple Choice
Circle the correct answer:

1. After a disaster, vaccination may be considered for:
 a. the elderly
 b. patients with chronic and debilitating diseases
 c. essential personnel
 d. children
 e. all of the above

True/False
Indicate T or F:

___ 2. After a disaster, infection control problems in hospitals usually become more severe.

___ 3. Proper burial of human corpses and animal carcasses is a most important measure in preventing epidemics of communicable diseases.

___ 4. Whether or not to provide chemosuppressive drugs against malaria to a population affected by, disaster is a complex decision that depends on local conditions and circumstances.

___ 5. Environmental interventions need to take into consideration the limitations in existing techniques and/or their misapplication.

___ 6. Mass immunization against influenza is a necessary measure to be carried out after a disaster.

___ 7. Malaria chemosuppression is usually practiced on populations living in areas with high levels of the disease.

___ 8. The promiscuous use of antibiotics can lead to the emergence of drug-resistant strains of bacteria.

___ 9. Mass administration of anti-infective drugs in a disaster-affected population is essential.

___ 10. Measures of communicable disease control which are effective in normal times quite often are not effective following a disaster.

Answer Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>e</td>
</tr>
<tr>
<td>2.</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
</tr>
<tr>
<td>6.</td>
<td>F</td>
</tr>
<tr>
<td>7.</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
</tr>
<tr>
<td>9.</td>
<td>F</td>
</tr>
<tr>
<td>10.</td>
<td>F</td>
</tr>
</tbody>
</table>
Epidemiologic Surveillance after Natural Disaster

by Dr. Karl A. Western, Assistant Director for International Research
National Institute of Allergies and Infectious Diseases, National Institutes of Health, U.S.A.

1982 Scientific Publication No. 420
Pan American Health Organization (PAHO)

Published also in Spanish (1982) as:
Vigilancia epidemiológica con posterioridad a los desastres naturales

1989 - Reprint (4000)

The publication of this manual, in English and Spanish, has been made possible by the financial support of the Canadian International Development Agency (CIDA) and the U.S. Office of Foreign Disaster Assistance of the U.S. Agency for International Development (AID/OFDA).

ISBN 92 75 11420 X
© Pan American Health Organization

Publications of the Pan American Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. For rights of reproduction or translation of PAHO publications, in part or in toto, application should be made to the Office of Publications, Pan American Health Organization, Washington, D. C. The Pan American Health Organization welcomes such applications.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Pan American Health Organization concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the Pan American Health Organization in preference to others of a similar nature that are not mentioned.
HEALTH FOR ALL THE YEAR 2000

In 1977, the World Health Assembly decided that the main social target of the governments and of WHO should be the attainment by all people of the world by the year 2000 of a level of health that would permit them to lead a socially and economically productive life, that is, the goal popularly known as "health for all by the year 2000."

In 1978 the International Conference on Primary Health Care (Alma-Ata, USSR) declared that, as a central function of the national health system and an integral part of economic and social development, primary health care was the key to achieving that goal. Subsequently, the governments committed themselves—at the global level at the World Health Assembly, and at the regional level at meetings of the PAHO Governing Bodies—to implement the resolutions adopted for attaining health for all in the Americas. The high point of these mandates was reached on 28 September 1981 when the Directing Council of PAHO approved the Plan of Action for implementing the regional strategies for health for all by the year 2000. These strategies had been approved by the Directing Council in 1980 (Resolution XX) and today constitute the basis of PAHO's policy and programming, and represent in addition the contribution of the Region of the Americas to the global strategies of WHO.

The Plan of Action approved by the Directing Council curtails the minimum goals and regional objectives, as well as the actions governments of the Americas and the Organization must take in order to attain health for all. The Plan, continental in nature, is essentially dynamic and is addressed not only to current problems but also to those likely to arise from the application of the strategies and the fulfillment of regional goals and objectives. It also defines priority areas that will serve as a basis in developing the program and the necessary infrastructure, for national and international action.

The exchange and dissemination of information constitutes one of the priority areas of the Plan of Action. PAHO's publication program—including periodicals, scientific publications, and official documents—is designed as a means of promoting the ideas contained in the Plan by disseminating data on policies, strategies, international cooperation programs, and progress achieved in collaboration with countries of the Americas in the process of attaining health for all by the year 2000.

Contents
Foreword
Preface
Acknowledgment and references
Part 1: Epidemiologic surveillance and disease control after natural disaster
Part 2: Annexes

Foreword

Most Latin American countries are highly vulnerable to natural disasters (earthquakes, floods, hurricanes, etc.). The consequences are immediate in terms of loss of lives and suffering. Longer-term consequences can include serious setbacks in national development plans.

The impact of past disasters has been enormous: Nicaragua, 1972, 5,000 deaths; Honduras, 1974, 6,000 deaths; Guatemala, 1976, 26,000 deaths; In Peru alone, the 1970 earthquake caused 70,000 deaths and approximately 170,000 casualties.

The Caribbean area is also vulnerable to natural disasters, such as hurricanes. Barbados was hit in 1955, Haiti in 1964, Dominica and the Dominican Republic in 1979, Saint Lucia, Haiti and Jamaica in 1980. Earthquakes have also occurred in Trinidad and Tobago, Jamaica and Antigua. Floods and landslides affect most of the islands. The disruption caused by natural
Disasters is magnified by the physical isolation of each country and the fact that, in most cases, the impact extended over the entire nation.

Disaster preparedness is a significant part of the overall strategy for achieving Health for All by the Year 2000. There is probably no event that so severely tests the adequacy of a nation's health infrastructure as the occurrence of a sudden natural disaster such as an earthquake, hurricane or flood. Especially in smaller developing countries, economic progress can also be jeopardized.

To a large extent, a solid, well-planned health delivery system that routinely includes the educated participation of the community is the most important preparation for a natural catastrophe. However, rapid recovery from large-scale natural disasters requires that special preparations and procedures be in place well before the disaster occurs. By definition, a disaster of large magnitude is one that overwhelms a community's normal response capacity.

The series of manuals on disaster preparedness issued by the Pan American Health Organization is designed to respond to the call from Member Countries to "disseminate the appropriate guidelines and manuals" so as to assist health workers in the Americas in developing disaster preparedness plans and training necessary human resources. Given the suddenness of their occurrence and the importance of speedy measures to prevent potential morbidity and mortality, natural disasters demand that a nation use appropriate technology and its own human resources during the immediate emergency. Dependence on outside resources can create a time lag that may have serious consequences for the health and well-being of the affected population.

This manual is a companion piece to the guide Emergency Health Management after Natural Disaster (PAHO Sci. Pub. No. 407, 1981,) and provides technical guidelines on specific characters contained in the parent guide. The parent guide provides an overview intended to be of use to policy makers and the administrators responsible for health service delivery after the occurrence of disaster in developing nations. This manual is directed to an audience which consists of the senior technical officers involved in postdisaster health relief. Given the importance of intersectoral collaboration for effective relief efforts, manual also provides guidelines for such cooperation.

The general principles and observations in this manual are relevant throughout the developing world. Special emphasis is, however, given to the experiences and needs of Latin America and the Caribbean. It is hoped that the manual will serve as a framework for developing national manuals, adapted to local circumstances, and that disaster preparedness will become an integrated component of national plans of action toward Health for All by the Year 2000.

Héctor R. Acuña, M.D., M.P.H.
Director

Preface
A companion piece to the guide Emergency Health Management after Natural Disaster (Pan American Health Organization, Scientific Publication No. 407, 1981), this manual contains a more detailed presentation of the information in the "Epidemiologic Surveillance and Disease Control" chapter of the guide. The guide provides an overview intended to be of use to policy
makers and the administrators responsible for health service delivery after the occurrence of
disaster in developing nations. This manual, in which the scientific basis of and experience with
the surveillance and control of communicable disease after disaster is summarized, is directed
to an audience which consists of the senior technical officers involved in disaster relief. These
will particularly be epidemiologists, specialists in disease control, sanitary engineers and senior
medical officers.

The natural disasters of concern in both this manual and the guide include earthquakes,
volcanic eruptions, floods, tidal waves and destructive winds (cyclones, hurricanes and
tornadoes). Also briefly considered as disasters in their own right in this work are epidemics of
communicable disease. Because of the close relationship between the conditions of
communication of disease, the ecology, and nutrition, there is discussion here of such topics as
drought, famine and manmade disaster, which are not covered in the parent guide. The time
frame of this manual extends beyond the three to four week frame of the guide since the impact
of communicable disease is often delayed for weeks or months after the acute event.

Scientific data for use in disaster epidemiology are scarce, yet there exists a plethora of
subjective observations (which in the end may prove to be correct). Consideration of the topics
discussed here must be modified to comply with local conditions.

This document is an initial attempt to present this material in an organized fashion. Further
documentation of the patterns of communicable diseases after disaster and further
epidemiologic research will be needed to more completely understand problems. This will
require sustained surveillance, long after the occurrence of acute events, on the part of national
health authorities.

The general principles and observations in this manual are relevant throughout the developing
world. Special emphasis is, however, given to the experiences and needs of Latin America and
the Caribbean.

Acknowledgment and references

Acknowledgment is due to many individuals with whom I had contact at the Centers for Disease
Control (1967-1975) and the Pan American Health Organization (1975-1979). Josefa Ippolito-
Shepherd served as research consultant. I would like to single out individuals in the following
agencies, in order to orient readers to scientists active in the field.

The Centers for Disease Control, Atlanta, Georgia, U.S.A.

Dr. William H. Foege
Dr. J. Lyle Conrad
Dr. Stanley O. Foster
Dr. Wolfe Bulle

The Centre for Research on the Epidemiology of Disasters, Brussels, Belgium

Prof. Michel F. Lechat

The Pan American Health Organization, Washington, D.C., U.S.A.
Technical information and articles concerning communicable diseases are plentiful and accessible to most senior public health professionals. However, scientific publications concerning epidemiologic surveillance and the organization of surveillance systems are surprisingly scarce and these usually deal with only a single disease. Reports about the epidemiologic surveillance of communicable diseases after disaster have been infrequent. Although the collective experience of individual epidemiologists with the organization of surveillance activities in disaster situations during the past fifteen years has grown, it is not readily available in scientific literature.

The following publications served as sources for many of the ideas and material incorporated into this document:

Additional publications of interest are cited in Annex 6.

*Copies available from the author.

**In the XIII Edition the risk of individual communicable diseases in disaster situations is discussed. This is a new feature not contained in earlier English editions and translations into French, Portuguese and Spanish.
Part 1: Epidemiologic surveillance and disease control after natural disaster

Chapter 1: Risk factors for communicable diseases after disasters

Until approximately 1850 and the onset of the era of science, administrators of the day were well aware of the triad of famines, epidemics and social disruption, and their consideration of the major causes of disaster was focused on famine and epidemics of quarantinable diseases. With improved sanitary conditions and the documentation of natural catastrophe beyond Europe and North America, brought about by more rapid communication and transportation, interest in natural disaster gradually grew.

In industrialized societies today, advances in economic conditions and in public health have virtually eliminated the problem of communicable diseases as disasters. In developing countries, however, communicable diseases continue to cause primary disasters. This is frequently true of such diseases as measles, poliomyelitis, malaria, typhoid fever, and arthropod-borne viruses such as dengue and yellow fever. When this occurs, national authorities usually seek assistance from agencies where there is expertise with communicable disease control, such as the Pan American Health Organization or the Centers for Disease Control, rather than from disaster relief agencies.

Epidemiologic factors that determine the potential of communicable disease transmission

The potential risk of communicable diseases after disaster is influenced by six types of adverse change. These are changes in preexistent levels of disease; ecological changes which are the result of the disaster; population displacement; changes in population density; disruption of public utilities; and interruption of basic public health services.

Changes in preexistent levels of disease

Usually the risk of a communicable disease in a Community affected by disaster is proportional to the endemic level. There is generally no risk of a given disease when the organism causes it is not present beforehand. Developing countries frequently have such poor systems for reporting communicable disease, however, that their national authorities lack adequate information about levels of specific organisms. Political pressure is nonetheless sometimes exerted for taking public health measures against diseases such as smallpox, cholera, yellow fever or other vector-borne diseases in geographic areas considered free of them by communicable disease specialists.

Relief workers can conceivably introduce communicable disease into areas affected by disaster. Diseases potentially introduced include new strains of influenza, foot-and-mouth disease, and those borne by insect vectors, particularly by *Aedes aegypti*. Also, nonimmune relief workers may be susceptible to endemic diseases to which the local population is tolerant or immune, and they may become ill.
Ecological changes caused by the disaster

Natural disasters, particularly droughts, floods and hurricanes, frequently produce ecological changes in the environment which increase or reduce the risk of communicable disease. Vector-borne and water-borne diseases are the most significantly affected. A hurricane with heavy rains which strikes the Caribbean coastal area of Central America may, for example, reduce the number of Anopheles aquasalis hatched, since the vectors prefer brackish tidal swamps and increase A. albimanus and A. darlingi, which breed easily in fresh, clear water and overflows. The net effect of the hurricane on human malaria, of which both mosquitoes are vectors, would be difficult to predict. Rain from such a hurricane would also cause flooding of streams and canals which in rural areas are often the source of drinking water. Under some circumstances, a water-borne zoonotic disease, such as leptospirosis, may become more widely disseminated via water-contact or drinking from contaminated sources. There is evidence that the short term effect of diluting supplies of already contaminated drinking water with rain may, however, reduce the level of disease (1). The population may, moreover, avoid drinking water contaminated by flooding for a cultural/psychological reason such as the presence of animal carcasses.

Population displacement

Movement of populations away from the areas affected by a disaster can affect the relative risk from communicable diseases in three ways. If the population moves nearby, the existing facilities and services in the receiving community will be strained. When resettlement occurs at some distance, the chances increase that the displaced population will encounter diseases not prevalent in their own community, to which they are susceptible. For example, nonimmunized, rural Andean populations brought together in camps after an earthquake may then be exposed to measles. Alternatively, displaced populations may bring the agents or vectors of communicable diseases with them. The latter concern frequently occurs when populations from low-lying coastal areas with malaria are evacuated further inland before a hurricane.

Population density

Population density is a critical factor in the transmission of diseases spread by the respiratory route and through person-to-person contact. Because of the destruction of houses, natural disasters almost invariably contribute to increased population density. Survivors of severe disaster seek shelter, food and water in less affected areas. When the damage is less severe, crowding may occur when people move in with other families and congregate in such public facilities as schools and churches. The resulting problems most commonly mentioned are acute respiratory illness, and include influenza and non-specific diarrheas.

Disruption of public utilities

Electricity, water, sewage disposal and other public utilities may be interrupted after a disaster. In a village with no electric power and where there are promiscuous defecation habits and contaminated sources of water in normal times, very little (if any) additional risk from communicable diseases follows the disaster. However, in economically more developed areas the extended disruption of basic services increases the risks of food-borne and water-borne disease. Insufficient water for washing hands and bathing also promotes the spread of diseases transmitted by contact.

Interruption of basic public health services

The interruption of basic public health services like vaccination, ambulatory treatment of tuberculosis and programs for the control of malaria and vectors are frequent, but often overlooked factors that increase the probability of disease transmission after disaster in a developing country. The risk of transmission increases proportionally to the extent and the
duration of the disruption. An outbreak of communicable disease may, therefore, occur months or years after a drought, a famine or a civil disturbance. The interruption causing such an occurrence is usually the result of the diversion of staff and financial resources to the relief effort, beyond the critical period. In addition or in conjunction with this, the failure to reestablish resources at sufficient levels contributes to the interruption.

The relative risk of communicable disease after natural versus manmade disasters

Manmade disasters fall into two categories. In the first are those that result from accidental destructive activity. Such events may be acute, as with airplane crashes, explosions, fires and intoxications, or they may be chronic processes like deforestation and the contamination of the environment. Accidental manmade disasters, which usually pose little, if any, additional risk of communicable disease to the community, are beyond the scope of this manual.

The second category consists of manmade disasters caused by warfare, economic or social disruption and civil disturbance. Warfare is frequently subdivided into the conventional type, including siege and blockade, and the nonconventional type, including biological, chemical (toxic gas) and nuclear warfare. Experience with the effect of nonconventional warfare on communicable disease is limited. Biological agents capable of producing epidemics that incapacitate military or civilian populations (e.g., anthrax and plague) are handled through taking the same public health measures as those used for naturally occurring outbreaks. Information about these is available elsewhere (2).

The relationship of social disruption and conventional warfare to communicable disease is similar to that of chronic disasters such as drought. Warfare and drought are the most common causes of wide-spread serious malnutrition and famine. Communicable diseases, which have adverse nutritional effects in previously well nourished individuals, compromise malnourished patients further, and many, like measles, are more severe in extremely malnourished individuals. There is also anecdotal evidence that some parasitic diseases, like malaria, and viral diseases, like herpes, tend to reactivate during refeeding (3). Decision makers may not have political interest or may not be able to assist affected populations during wars and insurrections, unlike during drought where civil authorities usually support relief efforts.

The six factors which contribute to the risk of communicable diseases after natural disasters mentioned earlier are generally valid in the event of conventional manmade disaster. Military activities, however, frequently involve movement through and extended stays in geographic areas which are not ordinarily inhabited by man. In the process, military populations may be exposed to a large variety of zoonotic and vector-borne diseases which are ordinarily of little concern to civilian relief administrators. Examples of such diseases are leishmaniasis, rickettsial diseases, and most arthropod-borne viral diseases. Military surgeons are aware of these risks and, thus, civilian physicians rarely become involved. The probability that these diseases will be spread to dependents and to the civilian population varies, but is quite low overall.

Postdisaster experience with communicable disease

Historically, a variety of communicable diseases have reached epidemic proportions after disaster (4,5) or because patients are malnourished and thus more susceptible of many disease agents (6,7). Indeed, until World War II more deaths during wartime or famine were caused by communicable disease than by hostile action or starvation. The diseases classically
associated with war and famine and the most effective methods for controlling them are enumerated in Table 1. Human transmission of smallpox has now been certified to be global!! eliminated and several other conditions (i.e., louse-borne typhus, plague, and relapsing fever) have a severely limited geographic distribution, in remote and largely unpopulated areas.

World War II represented a transitional period for industrialized combatant countries. The five years of continual war and occupation had affected civilian populations in Europe surprisingly less than did warfare in previous conflicts. The most notable increases in disease levels were those of new cases of pulmonary tuberculosis, which rose steadily throughout Western Europe, and of reported cases of typhoid fever, the total of which doubled (8-10). Most seriously affected were displaced persons, encamped refugees and inmates of concentration camps (11-13). In marginally nourished and starving patients, typhus, dysentery, scarlet fever, and diphtheria caused sporadic outbreaks and many deaths.

Serious outbreak of communicable disease after disaster has not been documented in Western Europe, the Continental United States or Canada since 1945. This improvement is associated with generally improved sanitary conditions and with the disappearance of certain vector-borne diseases from many countries, as in the case of malaria, or the restriction of diseases to isolated areas after the development and usage of effective insecticides and pesticides. The immunization of susceptible populations with vaccines effective against diseases such as diphtheria, pertussis, tetanus, poliomyelitis and measles and the adequate treatment and interruption of transmission by antibiotics of diseases like typhoid, streptococcal diseases, and tuberculosis is also associated with the lack of serious outbreaks. In caring for populations affected by disasters in industrialized countries, physicians have observed apparent increases in nonspecific diarrhea, and influenza and minor respiratory infections. The magnitude of the problem created by these, however, is such that population density alone may adequately explain it.

The evaluation of recent experiences with communicable diseases in Latin America, the Caribbean and other parts of the developing world is complicated by several factors related to changing patterns of disease, development, and the public health infrastructure. Most important of these are the persistence of many serious communicable diseases; the decline of some serious communicable disease; a lack of base line surveillance data; the inadequate number of laboratory diagnostic facilities; and in adequate coverage with vaccines.
Table 1. Communicable Diseases of Public Health Importance Classically Associated with War and Famine, with Traditional Methods of Prevention and Control (21)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Public Health Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Water and/or Food-Borne Diseases</td>
<td></td>
</tr>
<tr>
<td>1. Typhoid and Paratyphoid Fevers</td>
<td>a. Adequate disposal of feces and urine.</td>
</tr>
<tr>
<td>2. Food Poisoning</td>
<td>b. Safe water for drinking and washing</td>
</tr>
<tr>
<td>5. Leptospirosis</td>
<td>e. Disease surveillance.</td>
</tr>
<tr>
<td></td>
<td>f. Isolation and Treatment of early cases (typhoid and paratyphoid fevers, cholera).</td>
</tr>
<tr>
<td></td>
<td>g. Immunization (typhoid fever and cholera).</td>
</tr>
<tr>
<td>B. Person to Person Spread</td>
<td></td>
</tr>
<tr>
<td>Contact Diseases</td>
<td></td>
</tr>
<tr>
<td>1. Shigellosis</td>
<td>a. Reduced crowding.</td>
</tr>
<tr>
<td>4. Scabies</td>
<td>d. Disease surveillance in clinics.</td>
</tr>
<tr>
<td>5. Infectious hepatitis</td>
<td>e. Treatment of clinical cases.</td>
</tr>
<tr>
<td></td>
<td>f. Immunization (infectious hepatitis).</td>
</tr>
<tr>
<td>Respiratory Spread</td>
<td></td>
</tr>
<tr>
<td>1. Smallpox</td>
<td>a. Adequate levels of immunization before the disaster.</td>
</tr>
<tr>
<td>2. Measles</td>
<td>b. Reduced crowding.</td>
</tr>
<tr>
<td>3. Whooping Cough</td>
<td>c. Disease surveillance in clinics and community.</td>
</tr>
<tr>
<td>4. Diphtheria</td>
<td>d. Isolation of index cases (especially smallpox).</td>
</tr>
<tr>
<td>5. Influenza</td>
<td>e. Immunization of entire population (smallpox) or children (measles).</td>
</tr>
<tr>
<td>C. Vector-Borne Diseases</td>
<td></td>
</tr>
<tr>
<td>1. Louse-borne typhus</td>
<td>a. Disinfection (except malaria and encephalitis).</td>
</tr>
<tr>
<td>2. Plague (rat flea)</td>
<td>b. Vector control.</td>
</tr>
<tr>
<td>3. Relapsing fever</td>
<td>c. Disease surveillance.</td>
</tr>
<tr>
<td>4. Malaria (mosquito)</td>
<td>d. Isolation and treatment (no isolation for malaria).</td>
</tr>
<tr>
<td>5. Viral encephalitis</td>
<td></td>
</tr>
<tr>
<td>D. Wound Complications</td>
<td></td>
</tr>
<tr>
<td>1. Tetanus</td>
<td>a. Tetanus toxoid immunization.</td>
</tr>
<tr>
<td></td>
<td>b. Postexposure tetanus antitoxin.</td>
</tr>
</tbody>
</table>
Persistence of many serious communicable diseases
In spite of the rarity of documentation of outbreaks of communicable diseases after disasters in developing countries, there is a consensus that the probability of outbreak is considerably higher in Latin America and the Caribbean than it is in the U.S.A. This opinion is based upon morbidity and mortality data in which patterns of many communicable diseases are at levels comparable to those in Europe and North America at the turn of the century (14). The most prevalent of these diseases are acute respiratory infection, tuberculosis, diarrheal diseases of various etiologies and diseases which are preventable through vaccination.

Decline of some serious communicable diseases
In counterbalance to the high levels of most of the communicable diseases transmitted by person-to-person contact, in most of Latin America and the Caribbean the classical diseases associated with disasters have declined or disappeared. The Americas have also been spared the widespread severe malnutrition and recurrent famines which have afflicted Africa and Asia.

Lack of baseline surveillance data
Lack of information regarding levels of communicable diseases between disasters in developing countries makes it extremely difficult for epidemiologists to confirm subsequent reported "increases" and to attribute them to an acute event. A medical team which moves into an area without previous health services or regular disease reporting may, for example, encounter clinical cases of typhoid fever or tetanus. When this happens it is frequently difficult for field workers or relief agencies to determine if an acute public health emergency exists or whether the true level of endemic disease is finally being appreciated. The potential of epidemic levels of communicable disease after disaster and the appropriate organization of surveillance systems are the subjects of Chapters 2 and 3.

Inadequate laboratory diagnostic facilities
Documentation of communicable diseases such as typhoid or dengue fever is frequently frustrated after disasters in Latin America and the Caribbean when physicians rely exclusively on their clinical acumen to diagnose communicable diseases. This is the end result of medical curricula in which the effective use of the laboratory is not included, of poorly run microbiology laboratories in which the clinician or epidemiologist has little confidence, and of the policy of not providing adequate support to public health laboratories which are seen as too expensive, as using inappropriate technology, or as unnecessary to primary health care in developing countries.

Inadequate vaccination coverage
The probability of occurrence of vaccine-preventable diseases is related to the percentage of the population that has acquired natural immunity, and the percentage of unvaccinated susceptibles. Most of the vaccines in common use are directed against childhood diseases, such as diphtheria, pertussis, tetanus, poliomyelitis and measles. Indiscriminate or improvised vaccination programs are neither feasible nor effective in the aftermath of disaster. Therefore, the extent to which the children have completed their primary series of vaccinations before a disaster will determine the likelihood of epidemic after a disaster.
Chapter 2: Postdisaster potential of communicable disease epidemics

The preexistent level of disease in a community affected by disaster is one of six risk parameters. In theory, the absence in a country of a disease such as cholera eliminates the need for surveillance, but in practice, the need is not so simply perceived. Rumors and other unofficial sources of information frequently give rise to concern about cholera, plague, and other exotic conditions not otherwise believed endemic in an area. The epidemiologist cannot necessarily assume that because diseases have never been reported they do not persist in remote communities or in populations where there is no access to public health diagnostic laboratories. The recent discovery of an endemic focus of *Vibrio cholerae* in the United States (15) is an excellent example of this point. If the patients in Louisiana had by chance been diagnosed after a hurricane or a period of flooding, public opinion would have accepted a cause-effect relationship without question.

A second consideration is the possibility that an infectious disease agent may be brought into an affected area by relief workers, or in transport vehicles or supplies. This may occur within a country or, more dramatically, from another country. The 1976 earthquake in Guatemala, for example, occurred during the winter influenza season in North America. Vectors and agents of communicable disease can also be introduced by transport vehicles (particularly the airplane) or in relief supplies. In Latin America and the Caribbean, the *Aedes aegypti* mosquito could easily be reintroduced into an area free of the vector by air or surface transport vehicles which originate in or pass through an infested area. When an explosive outbreak points to a common source of infection, epidemiologists should also consider the possibility that tinned or processed food used for relief was contaminated. Aftosa, or foot-and-mouth disease, is a prime example of a serious veterinary problem of public health nature that may be introduced via infected meat, contaminated relief supplies and the shoes of relief workers. A major natural disaster does not provide justification for abandoning such accepted public health precautionary measures as limiting the contact of patients with ill relief workers, and spraying aircraft or inspecting them at ports of entry.

Exposure of susceptibles to endemic communicable disease

There are three ways in which susceptibles may be exposed to endemic diseases which cause subsequent epidemics or increased levels of disease after disaster. Briefly, this occurs through the migration of rural populations to congested areas; the migration of urban populations to rural areas; and the immigration of susceptibles into areas affected by the disaster. Anticipating these problems and implementing preventive measures require an appreciation of the patterns of disease in the countries stricken by disaster.

Migration of rural populations to congested areas

In medieval times, the privileged classes tried to avoid the effects of epidemics by fleeing the pestilent cities. The present pattern of reaction to drought, civil disturbance, and many natural disasters is one in which populations congregate for food, safety and medical attention. In general, the more rural and isolated are such migrants, the greater is their susceptibility to common communicable diseases, particularly those transmitted by aerosol or person-to-person contact. Individuals from dispersed communities are also less likely to have received routine childhood immunization. When populations migrate from highlands to camps or population
centers at lower altitudes, the risk of vector-borne diseases not transmitted at higher elevations is also added.

Migration of urban populations to rural areas

More rarely, urban populations may be forced by civil disturbance, an earthquake or a hurricane to move to a rural environment. In so doing they may be exposed to vector-borne diseases, in particular to malaria. The destruction of Managua by earthquake in 1972 was such an event in the Americas (16). The severity of chloroquine-resistant falciparum malaria among Kampouchean refugees is another recent example of acquisition of communicable disease through urban-rural migration. The refugees, first expelled from population centers to rural areas with low malaria indices, then migrated to the Thailand border through holoendemic areas (17).

Immigration of susceptibles to affected areas

The poorly briefed or underprovisioned international relief worker is the most obvious type of susceptible entering an area affected by disaster. During the Nigerian Civil War a decade ago, this was a serious enough problem that the effectiveness of some foreign medical teams was jeopardized. Failure to appreciate the risk of malaria and/or unwillingness to take chemosuppressive drugs (e.g., chloroquine) caused several cases of the disease, which included cerebral malaria and one fatality. One group, assigned to Biafra, neglected to obtain prophylactic gammaglobulin, and before it could be flown in, members of the team were incapacitated by infectious hepatitis (18).

Established relief agencies have long been aware of the risk of disease which susceptibles incur, but they do encounter difficulty convincing skeptical, inexperienced and unsupervised volunteers of the dimensions of the problem. Ad hoc voluntary groups are usually established in the aftermath of a particular major disaster and are also formed in donor countries with special geographic interest in the affected nation. Organizers and their medical staff of ad hoc groups should consult the more experienced agencies or one of the excellent manuals about preserving the health of travelers to the tropics (19-20).

Increases in levels of endemic communicable disease in local populations

It must be appreciated that reports of communicable diseases should be expected to increase during medical relief periods in communities with high levels of contagious diseases. If medical services were not in existence before a disaster, instituting them afterwards will certainly increase the apparent levels of disease. Even when primary health services do exist before disaster, regular disease reporting is usually very incomplete. After a disaster, reports increase because the number of reporting units is augmented. The total population served may also be swollen by movement into the area. Clinicians used to practicing under other local conditions may be confronted with clinical syndromes with which they are unfamiliar, and try to make etiologic diagnoses without diagnostic laboratory support.

During an epidemic—defined as an unexpected number of cases of a communicable disease—it is extremely important to determine whether increases in disease are real or are only apparent. Except in encamped refugees, the precise figure of the total population at risk is rarely available for the calculation of reported case rates, which is the number of reported cases divided by total population at risk. Thus, it may be necessary to perform a rapid survey in the community to reach an approximation of how common a communicable disease is in the
general population. Trends can be monitored by examining retrospective and prospective clinic reports of patients seen with the condition. However, even when evaluation is performed, it may be difficult to decide whether an increase in rates is significant enough to warrant taking emergency control measures or requesting additional medical supplies or staff.

Special problems with communicable disease in encamped populations
Experience in both the historic and the modern eras has repeatedly shown that the threat of communication of disease is greatest among crowded encamped populations, and that the likelihood of a serious outbreak increases with time. The danger is rather independent of the natural or manmade disaster which produced the encampment (21). The preventive medical officer should, therefore, prefer to have affected populations return to their homes or be promptly resettled. When this is not feasible, housing the population in dispersed temporary quarters with unaffected kin, or in nearby communities, is preferable to instituting encampment. However, the relief administrator of: ten responds to the instinctive feeling that the situation can be better managed and the needs of those most affected by the disaster more efficiently provided when they are congregated.

When it is unavoidable to institute encampment for extended periods, the risks of communicable disease can be reduced through strict supervision of meticulous attention to sanitation. Measures that should be taken are described in detail by Asar (22) and are summarized in Annex 4. Civilian authorities often find it difficult to organize and then indefinitely sustain needed military discipline. If the camps are occupied by refugees or independent-minded citizens, they are likely to eventually rebel.

Communicable diseases after disasters
Even in very poor developing countries, serious outbreaks of communicable disease very rarely occur after natural disasters which do not involve the encampment of populations (21). Known exceptions to this include cases of leptospirosis, which increased in Brazil after flooding (23), the aggravation of an ongoing typhoid fever problem following hurricanes in Mauritius (24), and cases of food poisoning in both Dominica and the Dominican Republic (25). It is probably more likely that the diversion of scarce resources from normal public health activities to disaster relief, or subsequent economic problems aggravated by a disaster, will lead to epidemic long after the acute event, such as in the resurgence and subsequent failure to eradicate malaria from Haiti (26).

With this in mind, in the thirteenth (1981) edition of the American Public Health Association handbook entitled *Control of Communicable Diseases in Man* (27) there is a consensus described that was reached by specialists in communicable disease, liaison representatives, and Pan American Health Organization/World Health Organization officials about the relative risk of individual communicable disease after disaster. This information is presented in a simplified form in Table 2. For a further discussion of each disease, the reader should consult the thirteenth edition or a tropical medicine text (28).
Table 2. Epidemic Potential of Selected Communicable Diseases Following Disaster in Latin America and the Caribbean (27, 28)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Disaster Potential Qualitative/Quantitative*</th>
<th>Geographic Areas at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amebiasis</td>
<td>contamination water/food</td>
<td>? cosmopolitan</td>
</tr>
<tr>
<td>Chickenpox- Herpes Zoster</td>
<td>overcrowding in emergency situations</td>
<td>3 + worldwide (infection nearly universal)</td>
</tr>
<tr>
<td>Cholera</td>
<td>contamination water/food, crowding in primitive conditions</td>
<td>1 + none</td>
</tr>
<tr>
<td>Diarrhea, nonspecific</td>
<td>contamination water/food, crowding</td>
<td>4 + universal</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>crowding of susceptible groups</td>
<td>2 + universal</td>
</tr>
<tr>
<td>Ebola/Marburg Virus</td>
<td>direct contact with infected blood secretions, organs or semen. Possible by vector-borne/aerosol routes</td>
<td>? Rhodesia, Kenya, Sudan, Zaire</td>
</tr>
<tr>
<td>Food Poisoning—Staphylococcal</td>
<td>mass feeding and inadequate refrigeration/cooking facilities</td>
<td>4+ universal</td>
</tr>
<tr>
<td>—Bacillus cereus</td>
<td>mass feeding and inadequate refrigeration/cooking facilities</td>
<td>3+ universal</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>contamination water/food, crowding</td>
<td>? universal</td>
</tr>
<tr>
<td>—Epidemic Viral Gastroenteritis</td>
<td>contamination of water/food, crowding</td>
<td>? Argentinia, Bolivia</td>
</tr>
<tr>
<td>—Rotavirus Gastroenteritis</td>
<td>contamination of food</td>
<td>? universal</td>
</tr>
<tr>
<td>Hemorrhagic Fevers of Argentinian and Bolivian Types</td>
<td>contamination of food</td>
<td>? Argentine, Bolivia</td>
</tr>
<tr>
<td>Hepatitides Viral —Viral Hepatitis A</td>
<td>contamination of water/food, inadequate sanitary facilities</td>
<td>4+ universal</td>
</tr>
<tr>
<td>—Viral Hepatitis B</td>
<td>improper sterilization procedures</td>
<td>4+ universal</td>
</tr>
<tr>
<td>—Viral Hepatitis, Non-A, Non-B</td>
<td>?</td>
<td>? universal</td>
</tr>
<tr>
<td>Influenza</td>
<td>crowding</td>
<td>4+ universal (pandemics, epidemics, localized and sporadic outbreaks)</td>
</tr>
<tr>
<td>Leprosy</td>
<td>interruption of case detection and therapy</td>
<td>? endemic</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>contamination of water/food, flooding of areas with high water table</td>
<td>? worldwide</td>
</tr>
<tr>
<td>Malaria</td>
<td>availability of water for mosquito breeding</td>
<td>? Tropical South America, Panama, and Haiti</td>
</tr>
<tr>
<td>Measles</td>
<td>introduction of measles to</td>
<td>? universal</td>
</tr>
<tr>
<td>Disease</td>
<td>Risk Factors</td>
<td>Frequency</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Meningitis, Meningococcal</td>
<td>crowding</td>
<td>? endemic</td>
</tr>
<tr>
<td>Pediculosis</td>
<td>crowding, clothing</td>
<td>? endemic worldwide</td>
</tr>
<tr>
<td>Plague</td>
<td>crowding, inappropriate rodent control, unhygienic conditions</td>
<td>? endemic in certain areas of North and South America</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>crowding nonimmune groups, contaminated food, inadequate sewage disposal</td>
<td>? worldwide</td>
</tr>
<tr>
<td>Rabies</td>
<td>stray dogs</td>
<td>2+ worldwide</td>
</tr>
<tr>
<td>Relapsing Fever</td>
<td>overcrowding, malnourishment, poor personal hygiene</td>
<td>2+ endemic</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>overcrowding, contamination of food in mass feeding, poor sanitation</td>
<td>3+ worldwide</td>
</tr>
<tr>
<td>Scabies</td>
<td>overcrowding</td>
<td>2+ endemic</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>crowding, poor sanitation, malnourishment</td>
<td>4+ worldwide</td>
</tr>
<tr>
<td>Streptococcal Diseases caused by Group A (Beta Hemolytic streptococci)</td>
<td>contamination of food</td>
<td>2+ common in temperate zones and semitropical areas</td>
</tr>
<tr>
<td>Tetanus</td>
<td>flood, hurricanes, earthquakes</td>
<td>3+ worldwide</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>crowding</td>
<td>1+ worldwide</td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>disruption of usual sanitary control of food and water</td>
<td>2+ worldwide</td>
</tr>
<tr>
<td>Typhus Fever (Endemic Louse- Borne)</td>
<td>unhygienic conditions, crowding</td>
<td>2+ endemic foci</td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>availability of infected mosquitoes</td>
<td>? enzootic in Northern South America and parts of Africa</td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>crowding</td>
<td>2+ worldwide</td>
</tr>
</tbody>
</table>

*? Potential
1 + rare
2 + occasional
3 + frequent
4 + usual
Chapter 3: Setting up surveillance systems

Disease surveillance essentially concerns gathering information that is critical for rationally planning, operating and evaluating public health activities. Participants of disease surveillance programs receive reports from sources which are both official and unofficial. Information from official sources originates from the local health care providers who see patients, passes from the local public health officer to one or more intermediate levels (such as city, state and province) and from there, goes to the national epidemiology group. Member Governments of the World Health Organization have agreed about procedures for international notification of selected diseases, and the method of reporting and emergency measures to be taken (29). In the handbook Control of Communicable Diseases in Man, the procedures are discussed in detail and the category of each contagious disease is indicated (27). Only cholera, plague, smallpox and yellow fever are currently subject to the International Health Regulations. Four other diseases, influenza, louse-borne epidemic typhus, louse-borne relapsing fever, and malaria, are under international surveillance.

Surveillance of diseases between disasters under normal conditions

Figure 1: Form for Weekly Report of Communicable Diseases Used at the Pan American Health Organization

<table>
<thead>
<tr>
<th>Country</th>
<th>Week ended</th>
<th>Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease and Category</th>
<th>Total for</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Classification of Diseases (1975 Revision)</td>
<td>Week</td>
<td>Total for Year</td>
</tr>
</tbody>
</table>

Diseases Subject to the International Health Regulations +

- Cholera (001)
- Plague (020)
- Smallpox (050)
- Sylvatic yellow fever (060.0)
- Urban yellow fever (060.1)
- Unspecified yellow fever (060.9)

Diseases under International Surveillance

- Influenza (487)
- Louse-borne (epidemic) typhus (080)
- Louse-borne relapsing fever (087.0)
- Malaria (084)

Diseases of the Expanded Program on Immunization

- Poliomyelitis, acute (045)
- Measles (055)
- Diphtheria (032)
Figure 1 is a reproduction of the Pan American Health Organization weekly report form for communicable diseases. It contains a list of the diseases that countries are asked to investigate through their national system of surveillance. The diseases included in the national surveillance program of each country vary considerably. Diseases given the highest priority for international reporting are invariably investigated, but in some countries certain diseases are not unless they are endemic or unless the control program is organized. At the other extreme, a few countries still maintain a surveillance list of nearly one hundred diseases. The Pan American Health Organization's Caribbean Epidemiology Center, CAREC, uses a modified form in that region.

Promulgating official reporting forms and diagnostic guidelines, and complying with international reporting requirements does not per se constitute an effective system for the surveillance and control of disease. In a surveillance system in operation, close ties to the reporting units are maintained, data analysis is prompt, and regular reports about disease conditions and
recommendations for locally appropriate action are circulated to the field. In active programs, assistance is often provided in investigating epidemics, with laboratory diagnosis, in organizing intensified control measures, and with inservice training of local health workers, from epidemiologists at the intermediate to the national level.

In practice, in a country where communications and laboratory services are good, the communicable disease control officer rarely learns of a serious or urgent problem through the weekly forms sent from the field. Telephone notification, consultation or notification through the public health laboratory usually precede official reporting. Moreover, epidemiologists are increasingly using interested clinics and physicians as "sentinel" reporting units (30). Regular telephone or mail surveys of a sample of physicians can also yield a good appreciation of actual levels of disease in the population (31). Indirect measures, such as school or industrial absenteeism, may be useful in such special situations as the surveillance of influenza (32). The effective communicable disease epidemiologist also monitors unofficial sources of information - such as television news programs, newspaper clippings, enquiries from the public, and even casual conversations - for early information about unconfirmed or potential communicable disease problems.

Descriptive material and operational research concerning the effectiveness of surveillance systems is not only surprisingly scanty, but that which does exist is usually devoted to only a single disease. While very exotic and fatal, or uncommon, diseases are reported frequently to health authorities, common communicable diseases are grossly underreported, even where the physicians have the legal obligation to do so. For example, in the United States it has been demonstrated in telephone surveys that, prior to the current national effort to eliminate the disease, only about 10% of measles cases were reported (31). In a national survey only 11% of gonorrhea cases treated by private physicians were shown to have been actually reported (33). Results of a state survey were that 42% of cases with gonorrhea listed in physicians' medical records were reported to authorities (34).

Surveillance sources following disaster
If only 10-20% of all notifiable diseases are reported under optimal conditions, how does an epidemiologist set up a meaningful system of communicable disease surveillance, and plan for control of disease after a major disaster? Should the epidemiologist not be familiar with the local conditions in a disaster stricken area, this is an even more pertinent question.

The first principle is to maximize use of preexisting surveillance data for "baseline" information, and to modify established epidemiologic surveillance systems to meet disaster conditions. At present there is a designated epidemiologist and a national surveillance unit within the health ministry of every country in Latin America and the Caribbean (See Annex 1). In addition, there are considerable health and surveillance data available to relief agencies, from Pan American Health Organization offices in twenty-seven countries (See Annex 2). Additional, intercountry resources of the Organization include officials in the Caribbean Epidemiology Center (CAREC) in Port-of-Spain, Trinidad, and staff epidemiologists located in larger countries.

The need for coordination of efforts after disaster with the normal surveillance activities in the health sector must be emphasized. The usual impulse after disaster is, however, for relief authorities to set up a separate postdisaster surveillance/assessment system. Of the three factors which aid and abet this tendency, perhaps the most critical is that the national authority responsible for coordinating health activities after a disaster in countries throughout the
Americas is usually not the health ministry or the principal health provider of normal times. A fundamental objective of the Emergency Preparedness and Disaster Relief Coordination Program of the Pan American Health Organization is, therefore, to encourage health relief coordinators to better use those health resources already available in the country (35).

The second factor contributing to the unfortunate tendency to separate routine and emergency surveillance is that international relief agency authorities are not always familiar with existing systems and epidemiologic resources. They may, thus, inadvertently duplicate efforts. Thirdly, because of the understandable inclination to provide rescue and relief immediately, administrators try to avoid unnecessary red tape procedures such as documenting predisaster conditions and organizing systems of surveillance. Becoming familiar with the epidemiology of endemic diseases and with the national surveillance system is, however, the proper response of epidemiologists contributing to relief. Since the lead time between an acute disaster and secondary epidemics of communicable disease can be weeks or months, opportunity for epidemiologists to assimilate the available surveillance data and to anticipate communicable disease problems is usually sufficient.

The health authorities of countries that are very poor, or in which there is civil disturbance, often lack an institutionalized mechanism for epidemiologic surveillance in the areas affected by disaster. Still, every effort should be made to coordinate the relief surveillance of communicable diseases with activities of national health authorities.

Any attempt to establish a traditional form of surveillance systems in an affected area during the immediate postdisaster period is fruitless. Since unofficial reporting systems may still be operational they should, however, be exploited to the fullest extent possible. Intelligence (albeit frequently in the form of rumors) spreads from affected areas extremely rapidly via the media, survivors and relief officers returning from the field, even when telephone services and road travel have been interrupted. Invaluable documentation, which may never be actually communicated to persons at the central level, may also exist in hospitals and clinics at the intermediate level.

In addition to using the official and unofficial surveillance systems, in a disaster relief effort the epidemiologist has the opportunity to develop and employ a supplemental, ad hoc surveillance system in which the medical relief workers take part. This third option may not be called for where the infrastructure in public health is a strong one or where relief efforts are only of short duration. Surveillance information from ad hoc relief sources are, however, critical in areas hit by disaster which lack a preexisting mechanism of surveillance, and in response to chronic disasters such as famine and warfare and where there are refugee camps. The remainder of this chapter is concerned with the mechanics of setting up such a supplemental surveillance system of limited duration in the aftermath of disaster.

Diseases to include in the surveillance

Special difficulties are posed by disaster. The situation usually necessitates limiting the number of diseases under surveillance, becoming more flexible in regard to diagnostic criteria in laboratory work, and relying on the symptom complexes reported. The epidemiologist must consider increased risks of epidemics of certain disease(s); service oriented relief workers’ limited tolerance of "paper-work" and bureaucratic requisites; the surveillance unit's inability to
process and evaluate large amounts of information; impaired communication with reporting units; a reduced capacity to respond to certain communicable disease problems because of logistical difficulties and/or problems concerning resources; and the destruction of, or reduced access to, laboratory diagnostic services.

Sound and practical clinical criteria will be needed for diagnosis of particularly important communicable diseases, in order to reduce mistaken diagnoses and make comparison between reporting units possible. The constellation of fever, conjunctivitis, cough and subsequent development of skin rash, has been used, for example, to diagnose measles in dark-skinned populations subject to famine (36). There is a line-listing of communicable diseases of public health importance, derived from experience in previous relief efforts and/or epidemic investigation of representative definitions of a case in Annex 3.

Selection of communicable diseases for surveillance and clinical criteria for case reporting should both be developed after consultation with the national epidemiologist and the health relief coordinator of an affected country. Under some circumstances, the decision to institute a symptom or symptom complex reporting system for common conditions may be taken, rather than attempting etiologic diagnoses. Use of case definitions and symptom complexes must be standardized throughout the relief effort. Relief agencies should incorporate them in predisaster training of those who may be health volunteer workers after disaster. Health providers should at the very least be drilled concerning diagnostic criteria before they report for duty after disaster.

The most common symptoms used in postdisaster surveillance include fever, fever-diarrhea and fever-cough. If fever-diarrhea is accepted as a reporting category, the need is not, however, eliminated for the epidemiologist to give clinicians the working definition of fever and diarrhea. This prevents including minor illnesses and normal variants in case reporting.

Disaster surveillance often includes that of noncommunicable conditions, thus assisting relief administration and monitoring the late emergence of effects of the disaster. Burns and trauma are examples of the former and animal bites and protein malnutrition, or kwashiorkor, of the latter. It is often desirable to report selected conditions among younger age groups, such as the newborn (0-30 days), infant (newborn-walking), preschool, school age (5-14), and postpubertal (over 15 years of age) groups, because infants and children are the most susceptible (non-immune) of the local population to endemic communicable diseases.

Figure 2 is a representative report form for daily disease surveillance, used after disaster in the Caribbean. The form is presented as a model and elsewhere should be modified to accord with local conditions, but it does demonstrate simplicity of design, adoption of clinical criteria, symptom complex reporting, inclusion of noncommunicable problems, and of age-specific notifications essential to postdisaster surveillance.

The collection, interpretation and utilization of data

Participation of field health units in the surveillance system must be as complete as possible after a disaster. It is critical to motivate reporting units. The participation of predisaster units should be continued when possible, with emphasis in reporting placed upon the diseases or symptom complexes targeted for surveillance. Public health nurses and inspectors have proven to be valuable reporting sources in the Caribbean. Health teams mobilized for the relief effort should be adequately briefed about the importance of surveillance, and should be given the case definitions to be used and be amply provided supplies of reporting forms. Briefing is ideally
undertaken by the epidemiologist before the teams depart for the field. In practice, however, and usually for the investigation of rumors of epidemics, the surveillance system is often initiated once the teams are already in place. Visits by the epidemiologist to field units is psychologically beneficial and provides feedback and stimulates reporting.

Figure 2: Representative Form for Daily Report of Disease Surveillance Postdisaster Surveillance

Daily Report by (Name of Reporter) ___________________
For___________________
Date___________________
From___________________

Evacuation Center
Hospital OPD
Health Center
Clinic
Other Specify___________________

Location Address___________________
Phone No.___________________

NUMBER OF NEW CASES WITH TOTAL
(1) Fever (100°F + 38°C+)

(2) Fever and Cough

(3) Fever and Diarrhea

(4) Vomiting and/or Diarrhea

(5) Fever and Rash

(6) Other New Medical Problems Specify

COMMENTS

COMPLETE FOR EVALUATION CENTER ONLY
No. of persons accommodated today

Report significant changes in Sanitation/Food Supply Situation

NOTE: COMPLETE BACK PORTION OF THE FORM FOR FIRST REPORT ONLY.
Two operational aspects of data collection deserve emphasis. First is the importance of regularly sending "negative" reports whenever no patients with notifiable diseases are seen in a unit. A report form with a line of zeros provides valuable information. It also permits assessment of the number of units participating in the surveillance system. Failure to report, on the other hand, can either mean a lack of disease, or that a unit has dropped out of the surveillance effort.

Speed of reporting, always critical in communicable disease surveillance, is especially vital following disaster. Mail and telephone services are most likely to be interrupted or erratic at that time. In general, weekly reporting from all units by telephone, telegraph or shortwave radio is preferable to reporting by mail. Immediate consultation about any unusual condition or suspected epidemic, at any time during the week, should be encouraged. Clear instructions about how to reach the central epidemiologist should be provided to workers in the field.

Innovative ways to facilitate rapid reporting during the period of severe disruption in transportation and communication should be sought by members of the epidemiology unit. This will frequently involve utilizing other elements of the relief effort. Previous sensitivity of the relief coordinator and national authorities to the importance of adequate surveillance for an effective overall effort will pay dividends. Example procedures used with success in previous disasters include daily or weekly radio reporting of selected diseases from the field; the distribution and retrieval of reporting forms by members of the drug and/or food distribution system; gaining access to the national security force's communication network; incorporating disease surveillance into a more general regular report required by the relief coordinator; and regular visiting to field units by the epidemiologist or a member of the surveillance team.

Reporting units should be made to understand that the primary responsibility is theirs to collate and interpret weekly totals, and to act on the information they collect through surveillance. The epidemiologist, rather than being bureaucratically annoying, should help reporting units efficiently carry out these tasks in a standardized fashion. The epidemiologist should also be available for consulting about the diagnosis and management of infectious diseases with the antibiotics or biologics available, to investigate suspected outbreaks and to supervise the disease control efforts. In a well run surveillance effort it is not acceptable to passively report the appearance of measles or fever-bloody diarrhea in a population by mail. When this occurs, the situation gets out of control before the epidemiologist is aware of the problem.

It is also imperative that incoming notifications are evaluated immediately upon receipt by the epidemiology unit, rather than at the end of the reporting period. This will permit prompt response to rumors or enquiries, recognition of unusual reports (e.g., typhus, human rabies) and comparison of individual units of the current reporting period with previous ones. It will also make it possible to recognize sudden increases in more common conditions such as diarrhea and acute respiratory illness.

There should be a firm and immutable deadline established by the epidemiology unit for receipt of notifications before the daily and weekly tabulations are compiled. The unit frequently works twenty-four hour shifts immediately after a major disaster strikes. Under less urgent conditions or in long term relief efforts, the reporting week should end on Friday, notifications received on Monday and the weekly report completed Tuesday. In long term refugee camps, it has sometimes been necessary to resort to clinic reporting only one day per week in order to reduce the bookkeeping demand placed on field workers. These pragmatic changes do not, however, change the need for immediate reporting of epidemics or unusual cases of disease.
A firm deadline for weekly tabulations is required to ensure prompt evaluation and action. The epidemiologic week actually decided upon is of minor importance, but its scheduling should be agreed upon by national and relief epidemiologists to avoid confusion about actual case counts in formal reports. For instance, if a case of malaria is reported by the national group in week 30 and in week 31 by the relief effort, the question is raised of whether one or two cases existed. Disagreement on this rather trivial point has in the past been a source of friction in international relief where epidemiologists of the donor and host countries differ in what constitutes an epidemiologic week.

Figure 3, derived from Figure 2, is a model for a weekly tabulation report at the central level. This model entails a summary sheet in which disease in children (under 15 years) and adults (15 years and older) are separately notified and combined totals are given. In this model, cases and deaths are combined in a total notification because the central summary sheets should be kept as uncluttered as possible for easy scanning. Of course, deaths can be followed on a separate weekly summary sheet. Diseases not singled out for postdisaster surveillance should be tabulated on the regular weekly report form presented in Figure 1.

Figure 3: Representative Form for Weekly Summary of Central Epidemiological Surveillance

<table>
<thead>
<tr>
<th>Reporting Unit</th>
<th>Disease</th>
<th>Fever >100°F+ 38°C+</th>
<th>Fever and Cough</th>
<th>Fever and Diarrhea</th>
<th>Vomiting and/or Diarrhea</th>
<th>Fever and Rash</th>
<th>Other New Medical Problems Specify...</th>
<th>Total >15 Yrs Old</th>
<th>Total <15 Yrs Old</th>
<th>Combined Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>15</td>
<td><15</td>
<td>>15</td>
<td><15</td>
<td>>15</td>
<td><15</td>
<td>>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS

Weekly Report by __________________________ For __________________________
(Name of Reporter)

Locating Address __________________________ Phone No. __________________________

Weekly tabulations can occupy an inordinate amount of the time of staff members, unless care is taken to limit their proliferation. The guiding principle of reporting is to keep the number of diseases under surveillance and tabulation to an absolute minimum. Cardinal sins are, on the one hand, to not evaluate the surveillance data collected by members of the field staff and, on the other hand, to sacrifice field investigation of epidemics and disease control activities in order to keep up with tabulating the data. Arrangements should be made to whatever extent possible to delegate responsibility for tabulation to national statisticians or local individuals such as teachers, tax officers, or such volunteers as students.

The epidemiologist should also extensively use maps and graphs for visual appreciation of disease trends. This is frequently a more productive investment of the scarce time of staff members than is generating columns and figures. Maps with pins indicating the geographic clustering of cases are particularly useful for following the spread of a disease and in international relief operations in which members of the epidemiology staff may lack intimate knowledge of reporting units’ proximity to each other. Well charted graphs can more sensitively indicate disease trends than numbers. This is demonstrated in Figure 4, in which reported cases of dog bites in Guatemala City following the earthquake in 1976 (37) are shown, and in Figure 5, in which reports of gastroenteritis in the disaster area are charted by weekly intervals (38). There are publications available about drafting epidemiologic visual material and graphs (39-43).

In summary, the epidemiologist and his superiors in the relief effort must anticipate that organizing effective postdisaster surveillance will itself lead to increased levels of reported disease, which may be real or only apparent. Some reports of increase in levels of disease will require field investigation, but despite efforts to document trends in the field it may be impossible to ascertain whether or not changes in levels are in fact real. However, there are
three simple measures which will provide independent evidence of the validity of trends of reported disease. The following should be monitored in the weekly epidemiologic tabulations: the total number of potential reporting units; the percentage of units from which reports are submitted during the period of surveillance summaries the cornerstone of surveillance feedback. Better, such as the registration of refugees or the opening of clinics in new areas.

Figure 5: Example of Simplified Method of Surveillance of Epidemics in Zones of Disaster: Number of Reported Cases of Enteritis by Half-Week, Locality of Zaragoza, Guatemala, March 1-December 10, 1976

Providing feedback to the field from the central level

Providing feedback is of particular importance to postdisaster surveillance, insofar as it promotes the cooperation of newly established reporting units and those which did not participate in the preexisting surveillance. Furthermore, many relief workers will not be familiar with the surveillance system and, even when they are, many give higher priority to providing health services than to carrying out daily or weekly surveillance reporting. Efforts to provide feedback will, however, be frustrated by limitations of diagnostic resources, epidemiologic manpower, communications and transport, as well as in obtaining access to existing facilities (e.g., space on helicopters, radio time and duplicating machines).

The situation which necessitates the relief of effort, on the other hand, is a special one in that whatever feedback which can be provided is especially welcome. A disaster is invariably stressful to members of health teams in the field, be they of national or international composition, since they are placed in unfamiliar circumstances. Furthermore, most relief
workers have little or no firsthand experience with disaster, and few feel they are adequately trained to cope with either the immediate or potential problems in public health. There is also personal concern about the risk of acquiring a communicable or tropical disease with which they may be unfamiliar. Relief workers are, moreover, particularly conscious of being isolated from one another and of their ignorance of events in adjacent areas. Factors such as these may explain why relief workers are so psychologically vulnerable, and prone to disseminating rumors of outbreaks. It is important to remember that these concerns are also shared by the general public, especially in areas where literacy is high.

These considerations render widespread promulgation of weekly surveillance summaries the cornerstone of surveillance feedback. Because few relief workers have training in epidemiology or significant knowledge of communicable diseases, commentary, informational material and graphics should also accompany the summaries. Duplicating machines or printing presses are available under most circumstances. The epidemiologist may, however, experience difficulty in gaining access to them because of competition with colleagues, and even when there is access there may be no funds for publishing the reports. The airlifting or local purchasing of such equipment may, thus, be more effective forms of relief assistance than is the donation of medical supplies. Innovation may be required for distribution to the field, but distribution usually can be arranged through the system developed for collection of relief deliveries, personal mail to relief workers, and so forth.

The weekly report provides more than feedback to field workers. The epidemiologist should ensure that the weekly report and adequate background information (personal visit or covering note) are circulated to the relief coordinator and other national authorities and local representatives of voluntary agencies. The relief coordinator should be responsible for distributing the report to members of the media and the community.
Chapter 4: Operational aspects of disease surveillance after disaster

While a complete discussion of operational considerations of surveillance after disaster is beyond the scope of this manual, there are four aspects which specially warrant inclusion. These are the investigation in the field of rumors and reports of communicable disease; gaining access to laboratories for obtaining definitive diagnoses and support in epidemiologic investigation; presenting epidemiologic information to decision makers; and carrying out surveillance activities during the recovery phase and afterward.

Field investigation of rumors and reports of communicable disease

Rumors and unconfirmed reports frequently circulate after a major disaster, but until recently epidemiologists were not asked to take part in relief efforts except when there was need to investigate the more serious of these. Political issues and the nature of public outcry, rather than public health priorities, often determined the perceived severity of a rumor or report. Rumors of increase in snake-bites after flooding, or the discovery of patients with residual poliomyelitis would, for example, lead invariably to an official government request for scarce antivenom or polio vaccine.

Following the Nigerian Civil War, a major bilateral agency initiated the sending of medical epidemiologists to evaluate the substance of such reports before responding to requests for assistance. This practice rapidly expanded to one in which requests for massive supplies of drugs and supplies for health services, and the long term impact of disaster on health services and nutritional status, are now routinely evaluated (44-46). Immediately consulting the medical epidemiologists of major relief agencies has become a definite feature in decision making. Now, epidemiologists are sent to affected areas to organize surveillance before rumors and unconfirmed reports are even generated.

In recent major disasters the appropriate evaluation of rumors has been made possible through this increasingly earlier involvement of epidemiologists in the relief response. This can be attributed to two factors. The most obvious is that prompt investigation can take place before a situation gets out of hand. Perhaps more important, however, has been the existence of the opportunity to educate members of disaster agencies, the media and national health authorities about appropriate ways to interpret and respond to rumor.

Epidemiology staff members who participate in relief should expect the appearance of rumors and unconfirmed reports and should be prepared to deal with them. Rumors from many sources may come to the epidemiologist's attention. Perhaps easiest to handle are reports communicated to field relief workers and visitors to the field from relief headquarters. Of the most frequent and difficult to handle are reports promulgated in the media, and reports directly brought to the attention of national leaders.

The most efficient and effective way of handling rumors of any origin is to undertake surveillance. To confirm and/or quantify the magnitude of a problem indicated by rumor, the epidemiology staff should try to canvass reporting units in the area by radio. Negative responses will frequently satisfy the need for information on the part of media, political authorities and participating agencies. This is particularly true when negative results are coupled with the promise of repealing the survey and of sharing surveillance information. Sources should
also be encouraged to report any rumors they might hear in the future to the epidemiology unit or the relief coordinator for investigation. In general, maintaining a positive attitude toward receiving rumors instills trust in the source, as well as in the public. When convinced that efforts to substantiate the reports are underway, responsible persons of the media will delay publication of rumors until after discussion with relief authorities.

Reports of disease in the media originate at local, regional, or national levels. It is common in this age of satellite communications for a television or newspaper item to have directly reached the international services from the area affected by the disaster, thus bypassing authorities in the capital. Although estimates of death and disease are not usually reported in the media, so that sensationalism is minimized and panic and anxiety are prevented, breakdowns of respect of such a policy do occur. Reporters often assume that information provided by a doctor or nurse on the scene is more accurate and reliable than that in releases from official, central sources. Inexperienced and tired health personnel have on occasion locally released information, subsequently shown to be mistaken or exaggerated, to members of the media. The likelihood of such an occurrence will be reduced if seasoned health workers lead relief teams, there are briefings about the policy of dealing with the media, and an open relationship is developed between the media and the relief coordinator.

It is always possible that individual reporters may be more concerned with publicity than accuracy and that precautions do not prevent the publication of rumor. Also, the extent of disaster or of an epidemic may be exaggerated in order to embarrass authorities or to seek political advantage. The only recourse to take under these circumstances is to provide the relief coordinator the most accurate information available.

When influential local citizens or authorities report a rumor, it can be difficult to convince decision makers to wait for the results of an epidemiologic investigation before taking unnecessary or counterproductive action. Fortunately, it is usually possible to convince policy makers that immediately dispatching a team to look into the report is the quickest and most visible and effective response available. A potentially more serious operational problem exists when local or national authorities deny rumors which have not been investigated.

The majority of rumors of epidemic communicable disease after a disaster will not be confirmed. Nevertheless, the epidemiology team should not discount rumors without canvassing reporting units and/or undertaking field investigations. It may be necessary to exercise selectivity in investigating rumors, based on public health implications and/or political sensitivity, since lack of manpower is a frequently limiting factor. When the central epidemiologist is not satisfied with the field staff's ability to investigate a rumor, one or more epidemiologists should be sent to the field. In international relief efforts, national epidemiologists and members of their staff should be responsible for investigations.

The principles involved in investigating rumors are very similar to those of any other epidemic investigation. These are discussed by Langmuir (47). Western (48), Sommer (1), and Blake (44) have demonstrated how to adapt these principles to disaster situations.

Gaining access to laboratories to obtain definitive diagnoses and support for epidemiologic investigations

Selected issues concerning the use of laboratories in disaster situations, particularly in remote areas and in poorer countries, are discussed in this section. Details not contained here are presented in documents available elsewhere (49-51).
When the epidemiologist investigating a rumor encounters patients with symptoms compatible with the disease in question, it is imperative to collect specimens appropriate for diagnosis, and to properly handle and transport them to a competent laboratory, where they should receive priority attention. Selected laboratory investigation of symptoms or symptom complexes (such as fever-diarrhea) reported to be increasing may also be required for undertaking appropriate public health measures and developing guidelines for proper management of patients.

There are four reasons that it may be necessary to obtain laboratory confirmation of selected notifiable diseases from a sample of patients. The first of these is that not all notifiable communicable diseases can be diagnosed with confidence on the basis of clinical criteria alone. The probability of reaching a mistaken diagnosis is increased during a period of relief in which medical staff members lack experience in recognizing tropical or endemic communicable diseases. In addition, experienced physicians from the affected area may fail to consider recently introduced diseases in their differential diagnoses. In Latin America and the Caribbean, for example, influenza, dengue and typhoid fever are frequently confused in surveillance reports.

Second, the public health laboratory is essential to the promotion of efficient communicable disease control. The epidemiologist and preventive medical officer are primarily concerned with communicable diseases in general populations, rather than in individual patients. For such persons, the diagnosis of typhoid fever or measles in a hospitalized patient only represents the tip of an iceberg. Examination of the disease in family members, close contact and neighborhood populations is frequently indicated. To determine the prevalence of disease and initiate control measures, it may also be necessary to undertake community-wide surveys.

The importance of precise diagnosis of an agent causing outbreak or a prevalent communicable disease for patient management, and particularly antibiotic management, is the third reason to obtain laboratory confirmation. For example, of influenza, dengue and typhoid fever, the first two require supportive care. Typhoid fever ordinarily requires treatment with chloramphenicol or ampicillin, but not penicillin or sulfonamides. The typhoid organism has developed resistance to chloramphenicol or ampicillin in some areas, however.

The final reason why access to diagnostic laboratory facilities is important to disaster relief is that critical vaccines, antibiotics and antisera may not be immediately available or may only exist in extremely short supply. Definitive laboratory diagnosis can be of considerable help in deciding in which areas there is a real demand for such scarce resources and for planning the relief effort.

Health authorities establish priorities for processing diagnostic specimens during times of disaster. Systematic confirmation of all suspected cases of the diseases subject to international notification and/or those of selected emphasis in surveillance is of highest priority. Next to these are more common conditions (febrile diarrhea) of which there are outbreaks, which require confirmation through a sample of cases. Laboratory diagnosis of disease for the purpose of individual case management is of lower priority. Since public health and clinical directors compete for limited laboratory resources, and because emergency conditions may make it necessary for national relief authorities to utilize hospital and private laboratory facilities, it is important to pay heed to these priorities.

In Table 3 is a line-listing of the most important communicable diseases found in patients affected by disaster, and the indications for seeking laboratory diagnosis for preventive medical
officers and clinicians. This is as a general guideline for emergency usage during times of disaster. As such, it presents minimal, instead of optimal, standards.

The response to be taken to suspect yellow fever exemplifies the appropriate response to one type of internationally notifiable disease. Laboratory diagnosis should be sought on all suspect cases. Viral isolation is only feasible during the first three days of illness. Acute and convalescent sera should be collected from all patients. Postmortem hepatic tissue should be obtained for histologic examination from all fatal cases. Viscerotomy, rather than autopsy, is practiced in many areas of Latin America. In contrast to suspect yellow fever is influenza, for which clinical reporting of outbreaks to the epidemiology unit is required. The unit should arrange throat washings and the obtaining of acute and convalescent sera from a small sample of acutely ill patients.

Table 3. Criteria for Collection of Specimens of Selected Communicable Diseases for Laboratory Diagnosis after Disaster (27, 49)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Class* *</th>
<th>Specimens for Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amebiasis</td>
<td>3C</td>
<td>Stool</td>
</tr>
<tr>
<td>Chickenpox- Herpes Zoster</td>
<td>3C</td>
<td>Blood</td>
</tr>
<tr>
<td>Cholera</td>
<td>1</td>
<td>Rectal swabs, stool, vomitus</td>
</tr>
<tr>
<td>Diarrhea Nonspecific</td>
<td>4</td>
<td>Fecal material</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>2A</td>
<td>Nose/throat swabs</td>
</tr>
<tr>
<td>Ebola-Marburg Viral Disease</td>
<td>2A</td>
<td>Blood</td>
</tr>
<tr>
<td>Food Poisoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Staphylococcal Food poisoning</td>
<td>4</td>
<td>Samples of ingested material</td>
</tr>
<tr>
<td>—Bacillus cereus</td>
<td>4</td>
<td>Fecal material</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Epidemic Viral</td>
<td>4</td>
<td>Fecal material</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Rotavirus Gastroenteritis</td>
<td>4</td>
<td>Stool, rectal swab</td>
</tr>
<tr>
<td>Hemorrhagic Fevers of Argentinian and Bolivian Types</td>
<td></td>
<td>Blood, spleen, throat washings</td>
</tr>
<tr>
<td>Hepatitides, Viral</td>
<td>2A</td>
<td>Blood</td>
</tr>
<tr>
<td>—Viral Hepatitis A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Viral Hepatitis B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Viral Hepatitis Non-A, Non-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>1 (under surveillance by WHO) 4 (other jurisdictions)</td>
<td>Pharyngeal/nasal swabs</td>
</tr>
<tr>
<td>Leprosy</td>
<td>2B</td>
<td>Tissue fluid from lesion, biopsy of nerve</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>2B</td>
<td>Blood, urine</td>
</tr>
<tr>
<td>Disease</td>
<td>Class</td>
<td>Sample(s)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Malaria</td>
<td>1</td>
<td>Blood</td>
</tr>
<tr>
<td>(under surveillance by WHO in non-endemic areas)</td>
<td>3C</td>
<td>Blood</td>
</tr>
<tr>
<td>Measles</td>
<td>2B</td>
<td>Blood, Conjunctivae/nasopharynx, Urine</td>
</tr>
<tr>
<td>Meningitis—Meningococcal</td>
<td>2A</td>
<td>Blood, Spinal fluid, Blood, Nasopharygeal swabs, Petechial scrapings, Ventricular/cisternal/subdural fluid</td>
</tr>
<tr>
<td>Pediculosis</td>
<td>5</td>
<td>Hair/clothing</td>
</tr>
<tr>
<td>Plague</td>
<td>1</td>
<td>Bubo fluid, Portions of bubo, Spleen, Bone marrow, Sputum, Blood, Ectoparasites</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>1</td>
<td>Feces, Oropharyngeal secretions</td>
</tr>
<tr>
<td>Rabies</td>
<td>2A</td>
<td>Brain, Frozen skin sections, Mucosal scrapings</td>
</tr>
<tr>
<td>Relapsing Fever</td>
<td>1 (Louse-borne)</td>
<td>3B (Tick-borne) Blood</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>2B</td>
<td>Fecal material</td>
</tr>
<tr>
<td>Scabies</td>
<td>5</td>
<td>Scraping from lesion</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>2B</td>
<td>Fecal material, Rectal swabs</td>
</tr>
<tr>
<td>Streptococcal Diseases</td>
<td>4</td>
<td>Blood</td>
</tr>
<tr>
<td>Caused by Group A (Beta Hemolytic Streptococci)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus</td>
<td>2A</td>
<td>Materials from wounds</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>2B</td>
<td>Sputum, Gastric washings, Pus, Urine, Spinal/pleural/synovial fluid</td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>2A</td>
<td>Blood</td>
</tr>
<tr>
<td>Typhus Fever, Endemic Louse-borne</td>
<td>1</td>
<td>Blood</td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>1</td>
<td>Blood</td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>2B</td>
<td>Nasopharyngeal swabs</td>
</tr>
</tbody>
</table>

Class 1: Case Report Universally Required by International Health Regulations

This class is limited to the diseases subject to the International Health Regulations (1969) (quarantinable diseases)—cholera, plague, smallpox and yellow fever, and the diseases under surveillance by WHO: louse-borne typhus, poliomyelitis, influenza and malaria.

Obligatory case report to local health authority by telephone, telegraph, or other rapid means; in an epidemic situation, collective reports of subsequent cases in a local area on a daily or weekly basis may be requested by the next superior jurisdiction—as for example, in an influenza epidemic. The local health authority forwards the initial report to next superior jurisdiction by expeditious means if it is the first recognized case in the local area already reported; otherwise, weekly by mail or telegraphically in unusual situations.
Class 2: Case Report Regularly Required Whenever the Disease Occurs
Two subclasses are recognized, based on the relative urgency for investigation of contacts and source of infection, or for starting control measures.

A. Case report to local health authority by telephone, telegraph, or other rapid means. These are forwarded to next superior jurisdiction weekly by mail, except that the first recognized case in an area or the first case outside the limits of a known affected local area is reported by telegraph; examples—typhoid fever, diphtheria.

B. Case report by most practicable means; forwarded to next superior jurisdiction as a collective report, weekly by mail; examples—brucellosis, leprosy.

Class 3: Selectively Recognized Endemic Areas
In many states and countries, diseases of this class are not reportable. Reporting may be prescribed in particular regions, states or countries by reason of undue frequency or severity. Three subclasses are recognized; A and B (below) are primarily useful under conditions of established endemicity as a means leading toward prompt control measures and to judge the effectiveness of control programs. The main purpose of O (below) is to stimulate control measures or to acquire essential epidemiological data.

A. Case report by telephone, telegraph, or other rapid means in specified areas where the disease ranks in importance with Class 2A: not reportable in many countries; examples—tularemia, scrub typhus.

B. Case report by most practicable means: forwarded to next superior jurisdiction as a collective report by snail weekly or monthly; not reportable in many countries; example—bartonellosis, coccidioidomycosis.

C. Collective report weekly by mail to local health authorites; forwarded to next superior jurisdiction by mail weekly, monthly, quarterly, or sometimes annually; examples—clonorchiasis, sandfly fever.

Class 4: Obligatory Report of Epidemics—No Case Report Required
Prompt report of outbreaks of particular public health importance by telephone, telegraph, or other rapid means; forwarded to next superior jurisdiction by telephone or telegraph. Pertinent data include number of cases, within what time, approximate population involved, and apparent mode of spread; examples—food poisoning, infectious keratoconjunctivitis.

Class 5: Official Report Not Ordinarily Justifiable
Diseases of this class are of two general kinds: those typically sporadic and uncommon, often not directly transmissible from man to man (chromoblastomycosis); or of such epidemiological nature as to offer no practical measures for control (common cold).

Diseases are often made reportable but the information gathered is put to no practical use. This frequently leads to deterioration in the general level of reporting, even for diseases of much importance. Better case reporting usually results when official reporting is restricted to those diseases for which control services are provided or potential control procedures are under evaluation, or epidemiological information is needed for a definite purpose.
Clinicians and epidemiologists from developed countries may feel that the guidelines in Table 3 are restrictive, but most public health officers in Latin America and the Caribbean would consider them excessive, in light of the inadequate or deteriorating state of public health diagnostic facilities throughout most of Latin America and the Caribbean. There are two reasons why such a view, even if true, is not an acceptable reason for failing to secure essential laboratory support during a period of emergency relief. First of all, the debilitated status of national public health laboratories does not necessarily provide indication of the diagnostic capability of hospital microbiology laboratories or of those in the private sector. In a major disaster, the opportunity is present to overcome normal institutional and bureaucratic barriers to the use of such facilities. The second reason for the inexcusability of failing to obtain laboratory support is that there is an international system of collaborating and reference laboratories for most diseases of public health importance that has been developed at the Pan American Health Organization and the World Health Organization. These laboratories can be called upon through national public health laboratories and PAHO/WHO to provide emergency diagnostic support. Furthermore, international relief transported by air permits the prompt shipment of specimens to reference laboratories in neighboring or industrialized countries. Annex 5 contains a list of centers and laboratories which collaborate in regard to the diseases covered in Table 3.

Presenting epidemiologic information to decision makers

The institution of control measures must be the result of the epidemic investigation with appropriate laboratory diagnostic support. There are reasons why the instituting of control should not, however, be taken for granted during an emergency. Even under normal conditions, a country may not have the internal capacity for emergency control. Whether or not this is true, decision makers may assign higher priority to undertaking relief activities or providing medical services than to putting prevention or control measures into effect. The staff needed to carry out control measures may be diverted elsewhere during the emergency. Finally, control measures may not be taken because the responsibility for these may be divided between the relief coordinator and the national authorities who are ordinarily responsible for vector control, immunization programs, etc.

Because epidemiology units do not have the authority or resources to adequately carry out control measures, it is critical to, as effectively as possible, present information from surveillance and the field investigations to key decision makers. Epidemiologic information, implications, and an outline of alternatives of action must be summarized in the presentation in nontechnical terms understandable to laymen. Ordinarily, first presentation should be made by the epidemiologist to the relief coordinator and/or the staff person responsible for health. Support on the part of the relief coordinator should suffice to secure available services and resources, since the relief coordinator has access to national and international resources, such as the Pan American Health Organization, and bilateral and voluntary agencies. This official is also able to initiate discussion with national authorities about overall responsibility for carrying out control measures. In the guide, Emergency Health Management after Natural Disaster (52), there is an overview of sources of international assistance and ways in which assistance is coordinated within the disaster-affected country.

Surveillance during and after the recovery phase

With increasing passage of time after a disaster, both decision makers and the public become progressively less concerned with the probability of epidemic disease. Initial enthusiasm also wanes for providing emergency health services to affected communities and temporary
settlements, and many bilateral and voluntary disaster relief agencies begin phasing out activities. Normal communications and transportation, as well as disease notification systems and control efforts, are restored. The phasing out of the intensified, disaster-related surveillance activities should take place after consultation with members of the national epidemiology group. Certain areas, such as permanent encampments of refugees, may require indefinite special surveillance.

In rural or remote areas, the phasing out of postdisaster surveillance may mean that all notification of disease ceases. Organized effort to maintain effective surveillance in such areas has not, in the few instances when it has been tried, been particularly successful. On the other hand, such an effort has never been of high priority or received significant economic support from authorities of disaster-affected countries or development agencies. In the past several years, however, the Pan American Health Organization has assigned high priority to developing or strengthening epidemiologic surveillance programs after disaster. In some countries, the monitoring of postdisaster recovery in the health sector has been an additional objective.

Chapter 5: The control of communicable disease after disaster

The activities of communicable disease control which are effective in normal times are usually also appropriate and effective in postdisaster periods. The twelfth and thirteenth editions of Control of Communicable Diseases in Man (2, 27) are very useful compendia in which these procedures are summarized disease by disease. Situations precipitated by disaster are often characterized by unique features, however, which warrant discussion in this final chapter. Comments will be divided for purposes of simplicity into sections on environmental health management, immunization, chemotherapy, and quarantine and isolation.

Environmental health management

The management of environmental health after disaster consists of activities related to basic sanitation—the disposal of excrete, the maintenance of water supply, personal hygiene, food supply and vector control, the burial of the dead, and the provision of shelter. Disaster relief administrators appreciate that limitations of time, manpower and resources demand establishing priorities. The factors brought into consideration for this purpose include the nature of preexisting conditions, cultural acceptability, creature comfort and risk to public health such as the occurrence of epidemics of communicable disease.

In general, the amount of disaster relief activity that is devoted to environmental health management is proportional to the sufficiency of sanitation facilities which existed beforehand. The limited duration of disaster relief activity renders it impractical to try to establish permanent sanitary facilities and safe sources of water and food if these were severely damaged by the disaster or were previously nonexistent. Populations in which there were low levels of personal hygiene and which lacked these amenities will not, in a short time period, be educated about the proper use of latrines, wells or bathing facilities. Previous exposure and the development of immunity to disease frequently means that rural populations without sanitary facilities are at lower risk than affected urban dwellers and relief workers of acquiring communicable diseases. In contrast, the interruption of water or electrical service in an industrialized community can
cause severe disruption of social and sanitary services and thus facilitate the transmission of disease. Encamped populations in both poor and less poor nations always require that meticulous attention be paid to environmental health management.

It is important for epidemiologists to realize that the environmental measures to which relief administrators give priority are frequently not those most associated with the risk of communicable disease transmission. Among the first concerns of environmental health managers are the existence of shelter and potable water, the burial of the dead and the disposal of excrete. Vector control, food protection and promoting personal hygiene are invariably assigned lower priority. These latter activities are, however, extremely important in terms of the transmission of communicable disease. In major disasters, particularly in poorer countries, the availability at all levels of persons trained and available to practice environmental health management is the factor which limits the promotion of these measures of high priority.

Human and animal carcasses have rarely, if ever, been associated with epidemics of communicable diseases, but even though the problems related to health are not at issue, in most societies the acceptable disposal of corpses is extremely important for cultural reasons. In most circumstances, the stench of unburied or improperly buried animal carcasses will not be tolerated for long.

Environmental intervention also frequently fails to prevent the transmission of communicable disease because of limitations in existing techniques and/or misapplication. Chlorination and/or filtration of water, for example, may not destroy protozoa such as Giardia lamblia. Water disinfection tablets (such as Globaline and Halazone) will destroy enteric bacteria, amoebae, and some, but not all, enteric viruses. Massive distribution of water purification tablets following disasters has not been effective in poorly educated populations unfamiliar with proper usage and thus is not a recommended routine measure. Indeed, if such tablets are ingested whole like pills, fatality may result. The tablets may be useful, however, among well educated and motivated groups such as relief workers, military, civil servants, and so forth.

Such measures as vector control are too often directed at nuisance insects rather than vectors of human disease. Pesticides may be applied to outdoor vegetation in order to reduce populations of biting mosquitoes (e.g., Culex), instead of the vectors of malaria (Anopheles) or dengue and yellow fever (Aedes aegypti). Resistant housefly populations may also be treated with excessive amounts of pesticides when improved excreta and solid waste collection and disposal would be much more effective.

The Pan American Health Organization’s manual, Emergency Vector Control after Natural Disaster (53), and the World Health Organization’s Guide to Sanitation in Natural Disasters (22) provide a thorough review of the principles of environmental health management.

Immunization

Historically, health authorities frequently advocated and carried out improvised emergency vaccination of the general population against typhoid fever, tetanus and cholera on a massive scale following disasters. Responsible disaster and relief agencies now recognize that these measures are unnecessary and counterproductive. At the base of the change in attitude are both scientific and practical considerations. Despite the compelling reasons to the contrary, though, mass immunization remains strongly linked with disaster in the psyches of the public
and politicians. It may thus be extremely difficult to overcome demands for immediate vaccination campaigns.

The scientific factors which contribute to the inadvisability of massive vaccination have been reviewed by members of the Pan American Health Organization (see Annex 5). Considerations include the fact that epidemics of these diseases rarely occur, even in previously unvaccinated populations, after disaster; with presently available vaccines primary immunization requires two or three injections given at two- to four-week intervals; typhoid, paratyphoid, and cholera vaccines confer only partial protection, which may last only several months; and for the communicable diseases most likely to occur, effective vaccines have not yet been developed. The most prevalent diseases in populations stricken by disaster are food intoxication due to bacterial toxins, salmonellosis, shigellosis, nonspecific diarrhea, infectious hepatitis, and influenza.

The clinical manifestations of infectious hepatitis can be reduced by gamma globulin, but gamma globulin does not reduce infection or transmission. In most developing countries, it is also too costly to use. Vaccination against influenza should be restricted to the elderly, patients with chronic debilitating disease, and essential personnel before disease appears in the community. The vaccine used for this purpose is a potent, antigen specific influenza vaccine. Neither gamma globulin nor influenza vaccine is recommended for mass immunization after disaster.

Experience has shown that it is usually impractical to attempt mass immunization immediately following a disaster and that when attempted, it detracts from the overall relief effort without producing a discernible benefit. Effective immunization requires prior planning, good systems of communication and transport, and access to the populations at risk. These requirements cannot be met in the immediate postdisaster period. Efforts to achieve mass vaccination in the relief phase also drain whatever limited manpower, communication facilities, and transportation exist. In addition, the improper handling and storage of certain vaccines, particularly of those which require refrigeration (yellow fever, measles, poliomyelitis) leads to unacceptably high wastage, or administering vaccines which lack potency.

Primary vaccination should be considered for young children whenever populations are expected to remain encamped longer than thirty days. Older children should be offered boosters at the appropriate time. The strategy, age groups, vaccine, schedule and so forth adopted for vaccinations should be in accordance with that of the National Expanded Programme of Immunization (EPI). This includes vaccinations against diphtheria, pertussis, tetanus, poliomyelitis, measles, and tuberculosis (BCG administration). Proper concern must be given to the preservation of vaccine potency, through attending to the cold chain as well as documenting coverage by keeping immunization records.

As a component of the routine screening of persons entering camps, immunization can be offered and continued as part of primary health care service. Of the total encamped population, children are targeted for vaccination and women of childbearing age for tetanus immunization. This is because most older children and adults in previously well-immunized populations will already be protected by vaccination; in unimmunized populations, older individuals have already acquired natural immunity; and the logistical problems previously associated with mass campaigns are reduced when concentration of effort is placed only on the susceptible population.
Exceptions to these rules may be occasionally necessary for isolated populations in which
diseases such as measles, poliomyelitis and influenza are not in routine circulation. Small island
populations or isolated mountainous groups, evacuated for safety or displaced by a disaster, are
examples of such populations.

Immunization has a real, but a limited role in adequately immunizing relief workers against the
endemic diseases to which they may be susceptible (poliomyelitis, measles and immune serum
globulin). The rationale for immunizing relief workers is that it preserves critically needed
manpower by preventing unnecessary episodes of communicable disease. The immunizations
required for volunteers from industrialized countries are the same as those recommended for
other international travelers (19). These are ideally completed before departure to the disaster-
affected area. If it is not possible to do so, second doses and booster doses should be
administered in the field.

Manuals are available from the Pan American Health Organization/World Health Organization
on immunization practices and the cold chain (54-56).

Chemotherapy
The mass administration of anti-infective drugs in disaster-affected populations is not
recommended. Scientific reasons why this is so include the fact that antibiotics are not effective
against viral diseases, such as influenza, hepatitis and the common cold; no single antibiotic
provides adequate coverage against all potential bacterial or rickettsial diseases; and antibiotics
have to be taken indefinitely to prevent infection with a susceptible organism. Moreover, anti-
infective agents can induce allergic reactions and toxic side effects which include death. The
promiscuous use of antibiotics can rapidly lead to emergence of drug resistant bacteria,
particularly of enteric organisms. Plasmid mediated antibiotic resistance is, moreover, frequently
not just against the antibiotic administered, but against multiple antibiotics. In addition, perhaps
more compelling reasons to avoid massive use of anti-infective drugs are the constraints of
logistical and human resources, as already discussed in connection with mass immunization
after disaster.

The prophylactic administration of antibiotics or sulfonamides to prevent diarrhea and the
routine treatment of uncomplicated upper respiratory complaints with antibiotics should be
discouraged for these reasons. It is sometimes advocated to administer anthelmintics, on the
premise that children in the tropics are malnourished and have multiple intestinal parasites.
Unfortunately, the cheapest anthelmintic drugs, such as piperazine, are of limited spectrum
against *Ascaris lumbricoides* (round worm). Broader spectrum anthelmintics such as
thiabendazole and mebendazole, cause toxic reactions unacceptably high for general use in
asymptomatic patients, and they are too expensive for many relief efforts.

Providing chemosuppressive drugs against malaria to populations affected by disaster requires
a more complex decision dependent upon local conditions and circumstances. Usually, the key
factor is whether or not an affected population has moved from an area free of malaria to one
with high levels. The presence of chloroquine resistant strains of malaria is also a factor to
consider. In an organized or well educated community, it is feasible that local leaders or heads
of families administer chloroquine once a week. The regimens which prevent chloroquine
resistant falciparum malaria are either more complicated, such as weekly administration of
chloroquine-primaquine and daily administration of dapsone, or consist of drugs which may not
be readily available, Fansidar/pyrimethamine-sulfadoxine combination tablets. It is thus
fortunate that stages 11 and 111 of chloroquine resistance are not the severe problem in the Americas that they are in southeast Asia.

Malaria chemosuppression is not usually practiced in areas where levels of malaria are high. This is because most members of the population have considerable immunity, which would be reduced by drug administration, and because community-wide chemosuppression cannot be maintained after the departure of relief agencies. Mass curative therapy is also discouraged among populations from holoendemic areas who have been displaced. It is argued that eliminating subclinical infection reduces acquired immunity and makes patients more susceptible to disease upon returning to their homes.

The mass administration of single parenteral doses of penicillin in communities where yaws (Treponema pertenue) is found needs brief mention. This may be the only universally accepted indication for community-wide anti-infective chemotherapy (57). Logistical constraints, demands for health services, and limited numbers of disease control personnel, however, create difficulties in undertaking even this response to yaws during an emergency.

Quarantine and isolation

In the *Handbook on Control of Communicable Diseases in Man* (2) there is a summary of currently recommended quarantine and isolation procedures for use with patients and their contacts. The Centers for Disease Control's guide, *Isolation Techniques for Use in Hospitals* (58), is directed toward limiting the spread of disease in acute care facilities. Unfortunately, the infection control programs which can, under normal circumstances, approach the standards in this guide are few in Latin America and the Caribbean. After disaster, conditions in the established hospital often include the lack of water and electricity essential for handwashing, disinfection and microbiological identification.

Infection rates in teaching hospitals in Latin America and the Caribbean approach fifty percent under normal circumstances. In studies of pediatric wards, prevalence of gastroenteritis has exceeded one hundred percent. Thus, if a child entered without diarrhea, he had it at least once before he was discharged. The nonexistence of effective and appropriate hospital infection control programs in developing countries must be taken into account by relief authorities charged with caring for casualties of disaster in existing institutions. A regional program is currently being developed at the Pan American Health Organization (59)
Part 2: Annexes

Annex 1: List of key epidemiologic contacts in the western hemisphere

<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguilla (U.K.)</td>
<td>Medical Officer Charge Medical & Health Department The Cottage Hospital The Valley</td>
<td>551</td>
</tr>
<tr>
<td>Antigua</td>
<td>Chief Medical Officer Ministry of Education, Health & Culture Medical Division St. John's</td>
<td>20522</td>
</tr>
<tr>
<td>Belize</td>
<td>Medical Officer of Health Medical Department Belize City</td>
<td>2151, 2137</td>
</tr>
<tr>
<td>Bermuda (U.K.)</td>
<td>Medical Officer Ministry of Health & Social Services Health Department Hamilton</td>
<td>2-0224</td>
</tr>
<tr>
<td>Argentina</td>
<td>Jefe Sector Vigilancia Epidemiológica e Immunizaciones Defensa 120-4° piso, Ofic. 4013 Código 1405, Buenos Aires</td>
<td>37-5472</td>
</tr>
<tr>
<td>Bahamas</td>
<td>Medical Officer of Health PO. Box N3729 Nassau, New Providence</td>
<td></td>
</tr>
<tr>
<td>Barbados</td>
<td>Senior Medical Officer of Health Ministry of Health and National Insurance Jemmotts Lane St. Michael, Bridgetown</td>
<td>75130, 75132</td>
</tr>
<tr>
<td>Brazil</td>
<td>Director Divisao de Epidemiologia e Estatística FSESP-DEESI Caixa Postal, 1530 20.000 Rio de Janeiro, RJ</td>
<td></td>
</tr>
<tr>
<td>British Virgin Islands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Medical Officer of Health
Medical & Health Department
Roadtown, Tortola

Telephone
4-3455

Canada
Director, Epidemiological Service
Laboratory Centre for Disease Control
Ottawa, Ontario KIA OL2

Telephone
(613) 992-6868

Cayman Islands (U.K.)
Chief Medical Officer
Health Department
c/o Hospital
Grand Cayman

Telephone
92121

Chile
Jefe
Departamento de Apoyo a los Programas
Ministerio de Salud
Mac Iver 541 4° piso
Santiago

Telephone
30967

Colombia
Director General de Epidemiología
Ministerio de Salud
Calle 55 N° 10-32, Bloque B. 2° piso
Bogotá

Telephone
211-2566
2 11-2799

Division Vigilancia Epidemiologica
Ministerio de Salud
Calle 55 N° 10-32, Bloque B. 2° piso
Bogotá

Telephone
211-2625

Costa Rica
Director
Division de Epidemiología
Ministerio de Salud
Casilla Postal, 10123
San José

Telephone
21-6358

Dominica (U.K.)
Medical Officer of Health
Medical Department
P.O. Box 25
Roseau

Telephone
2707

Dominican Republic
Director
División de Epidemiología
Secretaría de Salud
Apartado 1344
Santo Domingo

Telephone
565-3131
Ext. 268
Director
Dirección Programas Normativos
Secretaría de Salud
Apartado 1344
Santo Domingo

Telephone
565-3131
Ext. 268

Encargado de la Sección Vigilancia Epidemiología
Secretaría de Salud
Apartado 1344
Santo Domingo

Telephone
565-3131
Ext. 268

Encargada del Programa Ampliado de Inmunizaciones
Secretaría de Salud
Apartado 1344
Santo Domingo

Ecuador
Director
División Nacional de Epidemiología
Sodiro, 202
Quito

Telephone
233-22X

El Salvador
Jefe
División de Epidemiología
Ministerio de Salud Pública y Asistencia Social
Calle Arce No. 827
San Salvador

Telephone
21-4875

Grenada
Chief Medical Officer
Ministry of Health & Housing
St. George's

Telephone
2971

Guatemala
Jefe
División de Epidemiología
Dirección General Servicios de Salud
9a. Avenida, 14-65, Zona 1
Guatemala

Telephone
21801, 86071
directo 29303

Jefe
Unidad de Vigilancia Epidemiológica
División de Epidemiología
Dirección General Servicios de Salud
9a. Avenida, 14-65, Zona 1
Guatemala

Telephone
21801, 86071

Guyana
Designated Epidemiologist and Medical Officer of Health (Demerara)
Ministry of Health
Brickdam
Georgetown

Telephone
65118

Haiti
Director
Public Health Division
Rue des Miracles, s/n
Port-au-Prince

Telephone
2-1042, 2-1043

Epidemiologist
Public Health Division
Rue des Miracles, s/n
Port-au-Prince

Telephone
2-1042, 2-1043
Honduras
Jefe
División de Epidemiología
Ministerio de Salud Pública
Tegucigalpa

Telephone
22-1036

Jamaica
Medical Officer of Health
Ministry of Health & Environmental Control
10 Caledonia Avenue
Kingston 5

Telephone
92-69221

Mexico
Director General de Epidemiología e Investigación en Salud Pública
Secretaría de Salubridad y Asistencia
Francisco de P. Miranda, 177
Lomas de Plateros
México 19, D.F.

Telephone
593-0602

Subdirector de Epidemiología e Investigación en Salud Pública
Secretaría de Salubridad y Asistencia
Francisco P. Miranda No. 177
Lomas de Plateros
México 19, D.F.

Jefe
Departamento de Información Epidemiológica
Secretaría de Salubridad y Asistencia
Francisco P. Miranda, 177
Lomas de Plateros
Mexico 19, D.F.

Telephone
593-3661

Jefe
Servicios de Medicina Preventiva
Instituto Mexicano del Seguro Social

Durango 323, 6° piso
Mexico 7, D.F.

Telephone
528-7253

Jefe
Departamento de Vigilancia Epidemiológica
Instituto de Seguridad Social para el Servicio de los Trabajadores del Estado (ISSSTE)
Edificio "B", Avenida San Fernando, 547, 2° piso
Tlalpan
México 22, D.F.

Telephone
573-7434
573-1800 Ext. 151

Montserrat (U.K.)
Chief Medical Officer
Ministry of Education, Health & Welfare
Health Department
Plymouth

Telephone
2552, 2556

Nicaragua
Jefe
División de Medicina Preventiva
Ministerio de Salud
Managua

Telephone
50008, Ext. 3

Jefe de Epidemiología
Ministerio de Salud
Managua

Departamento de Epidemiología
Servicio Nacional de Erradicación de la Malaria
Managua

Panama
Director de Epidemiología
Ministerio de Salud
Apartado Postal 2048, Zona 1
Panama

Telephone
TELEX: MINSALUD
25-5987

Paraguay

Director
Servicio Nacional de Epidemiología y Zoonosis
Ministerio de Salud Pública
Asunción

Peru

Director Ejecutivo
Dirección de Epidemiología y Control de Enfermedades Transmisibles
Ministerio de Salud, 3er. piso
Av. Salaverry, s/n
Lima 11

Telephone
TELEX: 20433
23-4875

Saint Lucia

Director of Medical Services
Ministry of Health
Health Centre
Castries

Telephone
4416, 3815

St. Kitts (U.K.)

Chief Medical Officer
Ministry of Education, Health & Social Affairs
Health Centre
Basseterre

Telephone
2504

St. Vincent (U.K.)

Chief Medical Officer
Medical Department
Kingston

Telephone
61785

Suriname

Director
Bureau of Public Health (BOG)
P.O. Box 767
Rode Kruislaan
Paramaribo

Telephone
98564
99494

Deputy Director
Bureau of Public Health (BOG)
Rode Kruislaan
Paramaribo

Telephone
97978
99494

Trinidad & Tobago

Principal Medical Officer
Ministry of Health
35-37 Sackville Street
Port-of-Spain

Telephone
62-51732
51832

Non-Medical Epidemiologist
Surveillance Unit
Public Health Laboratory
Jamaica Blvd.
Federation Park
St. Clair

Telephone
62-25311

Turks & Caicos Islands (U.K.)

Chief Medical Officer
Health Department
Grand Turk

Telephone
2315, 2333

United States

Director
Epidemiology Program Office
Centers for Disease Control
Atlanta, Ga. 30333

Telephone
(404) 329-3661

Deputy Director
Epidemiology Program Office
Centers for Disease Control
Atlanta, Ga. 30333

Telephone
(404) 329-3661

Uruguay
Jefe

División de Epidemiología
Ministerio de Salud Pública
18 de julio 1892, 4° piso
Montevideo

Telephone
49-1200

Venezuela
División de Epidemiología
Ministerio de Salud y Asistencia Social
Edificio Sur, Centro Simón Bolívar
Caracas

Telephone
483-1922
Annex 2: Pan American health organization country offices and centers

Country Offices

Address
Telephones
Cable Address

Argentina
Representante de la OPS/OMS
32-5301
OFSANPAN
en Argentina
31-9151
BAIRES
(ARGENTINA)
Oficina Sanitaria Panamericana
Marcelo T. de Alvear 684, 4°piso
Telex: 122351
Buenos Aires, Argentina

Barbados, West Indies (Anguilla, Antigua, Barbuda, Montserrat, Nevis, and St. Kitts), British Virgin Islands, Dominica, Saint Lucia, St. Vincent and the Grenadines, Grenada.
PAHO/WHO Representative
42-63821
OFSANPAN
PO. Box 508
42-63865
BRIDGETOWN
Dayralls Road and Navy Garden
42-75661*
(BARBADOS)
Road
Christ Church
Bridgetown, Barbados
(*private)
Telex: 2336

Bolivia
Representante de la OPS/OMS
371644
OFSANPAN
en Bolivia
364757
LA PAZ
Casilla Postal 20094
792025*
(BOLIVIA)
Edificio "Gamarra," 4°piso
(*private)
Telex: 5576
Calle Landaeta No. 221
La Paz, Bolivia

Brazil
Brasília
Representante da OPAS/OMS
225-0395
OFSANPAN
no Brasil
223-0515
BRASILIA
Caixa Postal 04-0229
223-0435
(BRAZIL)
Setor de Embaixadas Norte,
223-1839*
Lote 19
CEP. 70000 Brasilia, D.F., Brasil
(*private)
Telex: 611293
Rio de Janeiro
São Paulo
Organizaccao Pan-Americana da
852-3373
OFSANPAN
Saudé
Avenida Dr. Eneas de Carvalho
SAO PAULO
Aguiar 188 - Piso 8
(BRAZIL)
CEP. 04023 Sao Paulo, SP, Brasil
Telex: 1122143

Chile
Representante de la OPS/OMS
30625
OFSANPAN
en Chile
31649
SANTIAGO
30801 *
(CHILE)
Oficina Sanitaria Panamericana
Monjitas 689
Telex: 0029
Santiago, Chile
(*private)

Colombia
Representante de la OPS/OMS
283-8298
OFSANPAN
en Colombia
282-2631
BOGOTA
Ministerio de Salud Pública
284-0485*
(COLOMBIA)
Apartados A, reos 29668 y 6739
Telex: 041310
Calle 16 No. 7-39, 9°piso
Bogotá, D.E., Colombia
(*private)

Costa Rica
Representante de la OPS/OMS
216458
OFSANPAN
en Costa Rica
SAN JOSE
Apartado OPS/OMS
(COSTA RICA)
San Jose, Costa Rica
Telex: 2568

Cuba
Representante de la OPS/OMS
32-3666
OFSANPAN
en Cuba
32-340fi
HABANA
Oficina Sanitaria Panamericana
(CUBA)
Calle 23 No. 406
Telex: 511 681
Vedado, Habana, Cuba

Dominican Republic
Representante de la OPS/OMS 565-3454
OFSANPAN
en la República Dominicana
SANTO DOMINGO
Ministerio de Salud y Previsión Social
(REP/DOMINICANA)
Apartado 1464
Telex: 0146
Santo Domingo, República Dominicana

Ecuador
Representante de la OPS/OMS
522-100
OFSANPAN
en el Ecuador
544-455
QUITO
Oficina Sanitaria Panamericana
(ECUADOR)
Isabel La Católica No. 1040
Telex: 2370
entre Francisco Salazar y Caruña
Barrio"La Floresta"
Apartado A-405, Correo Norte
Quito, Ecuador

El Salvador
Representante de la OPS/OMS
24-4765
OFSANPAN
en El Salvador
24-4757
SAN SALVADOR
Oficina Sanitaria Panamericana
(EL SALVADOR)
Apartado 1072, Sucursal Central
Telex: 30238
Edificio Plaza del Sol
Calle del Mediterraneo
Colonia la Sultana
San Salvador, El Salvador

French Guiana
PAHO/WHO Representative
72401
OFSANPAN
Post Office Box 1863
71676
PARAMARIBO
Gravenstraat 60 (boven)
(SURINAME)
Paramaribo, Suriname
Telex: 230

Guatemala
Representante de la OPS/OMS
64911
OFSANPAN
en Guatemala
64151
GUATEMALA
Oficina Sanitaria Panamericana
66807
(GUATEMALA)
Apartado Postal 383
318621*
Edificio Etisa, Plazuela España
7a. Avenida 12-23, Zona 9

Guyana
PAHO/WHO Representative
66654
OFSANPAN
Lot 8 Brickdam
69165
GEORGETOWN
Stalrock
(GUYANA)
Post Office Box 10969
Telex: 264
Georgetown, Guyana

Haiti
Représentant de l'OPS/OMS
21732
OFSANPAN
en Haiti
20764
PORT-AU-PRINCE
Bureau Sanitaire Panaméricain
(HAITI)
Rue Fernand No. 25
Canape-Vert
Port-au-Prince, Haiti
Telex: 0149

Honduras
Representante de la OPS/OMS
255773
OFSANPAN
en Honduras
225770
TEGUCIGALPA
Oficina Sanitaria Panamericana
(HONDURAS)
Apartado Postal 728
Telex: 1138
Tegucigalpa, D.C. Honduras

Jamaica, Belize, Bermuda, Turks and Caicos, Caymans
PAHO/WHO Representative
926-2365
OFSANPAN
Post Office Box 384,
KIN(S'FON
Cross Roads
926-2366
(JAMAICA)
Imperial Life Building
Telex: 2389
60 Knutsford Boulevard
Kingston 5, Jamaica

Mexico
Representante de la OPS/OMS
254-2033
OFSANPAN
en México
MEXICO. D.F.
Oficina Sanitaria Panamericana
(MEXICO)
Apartado Postal 105-34
Telex: 1774561
Homero 418, Colonia Polanco
Mexico 5, D.F., Mexico

Nicaragua
Representante de la OPS/OMS
25915
OFSANPAN
en Nicaragua
96601
MANAGUA
Ministerio de Salubridad
(NICARAGUA)
Pública
24650
Telex: 1382
Apartado Postal 1309
Telex: 1382
Managua, Nicaragua

Panamá
Coordinator de Programas
253328
OFSANPAN
en Panamá
PANAMA
Ministerio de Salud
(PANAMA)
Apartado Postal 7260, Zona 5
Telex: 0127
Panamá, Panamá

Paraguay
Representante de la OPS/OMS
200896
OFSANPAN
en el Paraguay
204703
ASUNCION
Ministerio de Salud Pública
(PARAGUAY)
Casilla 839
Pittirossi y Brasil
Asunción, Paraguay

Perú
40-9200
OFSANPAN
Representante de la OPS/OMS
40-9010
LIMA
en el Perú
40-6205*
(PERU)
Oficina Sanitaria Panamericana
Casilla 2117
Telex: 20260
Los Cedros 269, San Isidro
Lima 27, Peru
(*private)

Trinidad and Tobago
Representative
62-47524
OFSANPAN
PAHO/WHO
62-47424
PORT OF SPAIN
Post Office Box 898
62-44376
(TRINIDAD)
49 Jerningham Avenue
Port-of-Spain, Trinidad
Telex: 398

United States, including Puerto Rico and its dependencies (Vieques, Culebra) and U.S. Virgin Islands (St. Thomas, St. John, and St. Croix), Canada
Pan American Health Organization
861-3200
UNISANTE
525 Twenty-third Street, N.W.
Telex: ITT-440057-PASB
Washington, D.C. 20037
RCA-248338-PASB
U.S.A.
WUI-64152
WUD-892744
TRT- 197684

Uruguay
Representante de la OPS/OMS
403156
OFSANPAN
en el Uruguay
45478
MONTEVIDEO
Casilla 1821
(URUGUAY)
Montevideo, Uruguay

Venezuela and Netherlands Antilles
Coordinator de Programas en Venezuela
32-54-11
OFSANPAN
Oficina Sanitaria Panamericana
32-67-63
CARACAS
Apartado 6722 Carmelitas
32-84-43
(VENEZUELA)
Avenida Sexta entre 5a. y 6a.
33-20-91
Transversal, Altamira
Telex: 23148
Caracas 101, Venezuela

Centers

Address
Telephones
Cable Address
Pan American Zoonoses Center
CEPANZO (AMRO-3300)
Director
658-0216
CEPANZO
Centro Panamericano de Zoonosis
658-5718
RAMOS MEJIA
Casilla de Correo 3092
654-5301
(ARGENTINA)
Correo Central
658-6899*
Buenos Aires, Argentina
Telex: 122689
(*private)

Pan American Foot-and-Mouth Disease Center
AFTOSA (AMRO-3200)
Director
771-3128
PANAFTOSA
Centro Panamericano de Febre
771-3129
RIO DE JANEIRO
Aftosa
771-3130
(BRAZIL)
Caixa Postal 589
771-3131
CEP. 20000 Rio de Janeiro, RJ,
771-3132
Telex: 217179
Brasil
771-3133

Latin American Center of Educational Technology for Health
CLATES (AMRO-8700)
Director
270-5339
NUTES/CLATES
Centro Latinoamericano de
270-3944*
RIO DE JANEIRO
Tecnología Educacional para a
(BRAZIL)
Saúde
Caixa Postal 8002-ZC 24
(*private)
Centro de Ciencias de Saúde
Telex: 2121797
Bloco A, Cidade Universitaria
CEP. 20000 Rio de Janeiro, GB.
Brasil
Regional Library of Medicine and the Health Sciences
BIREME (AMRO-8570)
Director
549-2611
BIREME
Biblioteca Regional de Medicina
852-3373*
SAO PAULO
Caixa Postal 20831
(BRAZIL)
Rua Botucatu 862
Vilá Clementino
CEP. 04023 Sao Paulo, SP, Brasil *South East Region Office
Institute of Nutrition of Central America and Panama
INCAP (AMRO-1430)
43762
INCAP
Instituto de Nutritión de
43763
GUATEMALA
Centro America y Panama
(GUATEMALA)
Carretera Roosevelt, Zona 11
Guatemala, Guatemala, C.A.
Telex: 4150
Caribbean Food and Nutrition Institute
CFNI (AMRO-1411)
Director
927-8338
CAJANUS
Caribbean Food and Nutrition
927-6661
KINGSTON
Institute
University of the West Indies
Post Office Box 140
(JAMAICA)
Kingston 7, Jamaica
Telex: 2489

Panamerican Center for Human Ecology and Health
ECO (AMRO-2300)
Director
254-2033
OFSANPAN
Centro Panamericano de Ecología
MEXICO, D.F
y Salud Humana
(MEXICO)
Apartado Postal 37-473
(FOR ECO)
Homero 418, Colonia Polanco
Mexico 6, D.F., Mexico
Telex: 1774561

Pan American Center for Sanitary Engineering and Environmental Sciences
CEPIS (AMRO-2070)
Director
35-4135
CEPIS
Centro Panamericano de Ingeniería
LIMA
Sanitaria y Ciencias del Ambiente
(PERU)
Casilla Postal 4337
Calle Los Pinos 259
Telex: 21052
Urb. Camacho
Lima 100, Perú

Caribbean Epidemiology Center
CAREC (AMRO-4370)
Director
62-24745
CAREC
Caribbean Epidemiology Center
62-23277
PORT OF SPAIN
Post Office Box 164
(TRINIDAD)
Port-of-Spain, Trinidad
Telex: 398

Latin American Center for Perinatology and Human Development
CLAP (AMRO-1370)
Director
41-02-89
FISIOLOBS
Centro Latinamericano de
41-10-53
MONTEVIDEO
Perinatología y Desarrollo
(URUGUAY)
Humano
Casilla de Correo 627
Montevideo, Uruguay
Annex 3: PAHO/WHO collaborating centers and reference laboratories for selected communicable diseases of public health importance

Brazil

· Adolfo Lutz Institute, Sao Paulo
 - Arbovirus diseases
 - Food contamination monitoring

· Centro de Pesquisas "Rene Rachou," M.S. - Fiocruz-Ineru, Belo Horizonte
 - Trypanosomiasis

Canada

· Department of National Health and Welfare, Ottawa, Ontario
 - Food contamination monitoring
 - Virus diseases, general

Costa Rica

· The Carlos Saenz Herrera National Children's Hospital, San Jose, Costa Rica (non-official PAHO center)
 - Diarrheal diseases

France

· Institut Alfred-Fournier, Paris
 - Venereal infections and Treponematoses

· Institut de Médicine Tropicale, Service de Santé des Armées, Marseille-Armées
 - Meningococcal infections

· Institut Pasteur, Paris
 - Arbovirus diseases
 - Enteric infections, bacterial
 - Leptospirosis
 - Rabies

· Laboratoire National de la Sante Publique, Paris
 - Poxvirus

· Université Claude Bernard, Laboratoire de Virologie, Lyon
 - Virus diseases, general

Guatemala

· INCAP, Guatemala (non-official PAHO center)
- Rotarvirus (latex toxigenic E. coli)

· INCAP, Unified Food Control Laboratory, (Guatemala City
- Food contamination monitoring

Jamaica

· Bustamante Children's Hospital, Kingston (non-official PAHO center)
- Diarrheal disease

· University of the West Indies, Department of Microbiology, Kingston
- Virus diseases, general

Mexico

· Secretaría de Salubridad y Asistencia , Subsecretaría de Mejoramiento del Ambiente, México, D.F.
- Food contamination

Peru

· Institutos Nacionales de Salud, Lima (non-official PAHO center)
- Enteric microbiology

United Kingdom

· Central Public Health Laboratory, London
- Enteric infections, bacterial - Influenza Virus diseases, general

· Centre for Overseas Pest Research, Division of Chemical Control Research, Porton Down, Salisbury
- Vector biology and control

· Liverpool School of Tropical Medicine, Liverpool
- Malaria

· London School of Hygiene and Tropical Medicine, London
- Filariasis
- Leishmaniasis
- Malaria
- Trypanosomiasis
- Vector biology and control
- Viral hepatitis

· Medical Research Council Laboratories, Toxicology Research [Unit, Carshalton
- Vector biology and control

· Medical Research Council, Harrow
- Virus diseases, general

· Medical Research Council, National Institute for Medical Research, London
- Influenza
- Leprosy
- Tuberculosis

· Ministry of Agriculture, Fisheries and Food, London
- Food contamination monitoring

· Ministry of Agriculture, Fisheries and Food, Diseases of Breeding Department, Central Veterinary Laboratory, Weybridge
- Brucellosis

· Public Health Laboratory Service, Leptospirosis Reference Laboratory, London
- Leptospirosis

· Public Health Laboratory Service, Centre for Applied Microbiology and Research, Special Pathogens Unit, Salisbury
- Virus diseases (special pathogens)

· University of Edinburgh, Institute of Animal Genetics, Edinburgh
- Malaria

· University of London, Institute of Ophthalmology, Department of Clinical Ophthalmology, London
- Trachoma and other Chlamydial infections

· University of London, Overseas Spraying Machinery Centre, Imperial College Field Station, Imperial College of Science and Technology, Ascot
- Vector biology and control

· Weight-Fleming Institute of Microbiology, St. Mary's Hospital Medical School, University of London, London
- Smallpox

· Zoological Society of London, Nuffield Laboratories of Comparative Medicine, London
- Malaria

United States of America

· Armed Forces Institute of Pathology, Washington
- Filariasis

· Baylor University, College of Medicine, Department of Virology and Epidemiology, Houston, Texas
- Virus diseases, general

· Centers for Disease Control, Atlanta, Georgia
- Enteric infections, bacterial
- Enterovirus diseases
- Influenza
- Leprosy
- Leptospirosis
- Rickettsiosis
- Smallpox
- Vector biology and control
- Venereal infections and Treponematoses
- Virus diseases, general
- Virus diseases, special pathogens

· Center for Disease Control, Fort Collins, Colorado
 - Arbovirus diseases

· Center for Disease Control, Lawrenceville, Georgia
 - Rabies

· Center for Disease Control, Phoenix Laboratories, Phoenix, Arizona
 - Viral hepatitis

· Francis 1. Proctor Foundation for Research in Ophthalmology, University of California Medical Center, San Francisco, California
 - Trachoma

· The George Williams Hooper Foundation, San Francisco Medical Center, San Francisco, California
 - Chlamydia
 - Venereal infections and Treponematoses

· Johns Hopkins University, School of Medicine, Department of Microbiology, Baltimore, Maryland
 - Treponematoses

· National Institutes of Health, National Institute of Allergies and Infectious Diseases, Laboratory of Infectious Diseases, Bethesda, Maryland
 - Mycoplasmas
 - Virus diseases, general

· National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratory, Hamilton, Montana
 - Rickettsioses

· Ohio State University, Department of Entomology, College of Biological Sciences, Columbus, Ohio
 - Vector biology and control

· St. Jude’s Children Research Hospital, University of Tennessee, Memphis, Tennessee
 - Influenza (in animals)

· United States Department of Agriculture, Insects Affecting Man and Animals Research Laboratory, Gainesville Florida
 - Vector biology and control

· United States Department of Agriculture, Gulf Coast Mosquito Research Laboratory, Lake Charles, Louisiana
- Vector biology and control

· United States Department of Health and Human Services, Bureau of Food, Food and Drug Administration, Washington, D.C.
 - Food contamination monitoring

· United States Public Health Services Hospital, Laboratory Research Branch, Carville, Louisiana
 - Leprosy

· University of California, Department of Agricultural Engineering, Davis, California
 - Vector biology and control

· University of California, Department of Entomology, Riverside, California
 - Vector biology and control

· University of Illinois, College of Liberal Arts and Sciences, Department of Entomology, Urbana, Illinois
 - Vector biology and control

· University of Maryland, School of Medicine, Department of Microbiology, Baltimore, Maryland
 - Rickettsioses

· University of Notre Dame, Indiana
 - Vector biology and control

· University of Texas, South Western Medical School, Department of Pathology, Dallas, Texas
 - Vector biology and control

· The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
 - Rubies

· Yale University, Department of Epidemiology and Public Health. Yale Arbovirus Research Unit, New Haven Connecticut
 - Arbovirus diseases

Venezuela

· Instituto Nacional de Tuberculosis, Caracas
 - Tuberculosis

· Ministerio de Sanidad y Asistencia Social, Departamento Central de Vectores y Reservorios, Division de Endemias Rurales, Maracay
 - Vector biology and control

· Ministry of Health and Social Welfare, Caracas
 - Leprosy

· National Institute of Dermatology, Universidad Central de Venezuela, Caracas
 - Leprosy
Annex 4: Summary of sanitation requirements during disasters

During evacuation

Water

Minimum 3 liters (0.8 US gal) per person per day in cold and temperature climates. Minimum 6 liters (1 1/2 US gal) per person per day in hot climates. Water from suspected sources must be boiled or disinfected.

Waste disposal

All-purpose trench: depth 60 cm (2 ft); width 45 cm (1 ft 6 in); length 3 m (10 ft) per 1000 persons.

Food

Non-perishable, not requiring cooking.

During relief operations

Tent camps

Site:
slope of land and nature of soil favoring easy drainage;
protected from adverse weather conditions;
away from mosquito breeding-places and refuse dumps;
away from commercial and industrial zones.

Layout:
area 3-4 hectares per 1000 persons (330-440 ft2 per person);
width of roads 10 m (33 ft);
minimum distance between tent pegs and edge of road 2 m (7 ft);
minimum distance between tents 8 m (26 ft);
minimum floor area in tent 3 m2 (33 ft2) per person.

Water distribution:
minimum capacity of tanks 200 liters (50 US gal);
maximum distance from farthest tent 100 m (330 ft).

Refuse containers:
metallic with tight lid;
capacity 50-100 liters (13-26 US gal);
1 for every 4-8 tents or 25-50 persons.
Latrine accommodation:
5-6 seats per 100 persons;
distance from tents 30-50 m (100-160 ft).

Washing:
ablution bench, doubled-sided, 3 m (10 ft) long;
2 for every 100 persons.

Buildings

Accommodation:
minimum floor area 3.5m² (40 ft²) per person;
minimum air space 10m² (350 ft³) per person;
minimum air circulation 30m² (1100 ft³) per person per hour;
minimum distance between beds 75 cm (2 ft 6 in).

Washing:
1 hand basin for every 10 persons, or 1 wash bench, 4-5 m (13-17 ft)
in length, for every 100 persons;
1 shower head for 50 persons in temperate climates, 1 for every 30
persons in hot climates;
separate blocks for men and women.

Toilet accommodation:
1 seat for every 25 women, 1 seat and 1 urinal for every 35 men; maximum distance from
building 50 m (160 ft).

Refuse containers:
capacity 50-100 liters (13-26 US gal), 1 for every 12-25 persons.

Water supply

Daily consumption:
field hospitals 40-60 liters (10-15 US gal) per person;
mass feeding centers 20-30 liters (5-8 US gal) per person;
temporary shelters and camps 15-20 liters (4-5 US gal) per person;
washing installations 35 liters (10 US gal) per person.

Water disinfection:
routine residual chlorine 0.7 mg/liter;
disinfection of pipes: 50 mg available chlorine per liter for 24 hour's
contact, or 100 mg available chlorine per liter for 1 hour's contact;
disinfection of wells and springs: 50-100 mg per liter for 12 hours.

Water protection:
distance between water source and source of pollution 30 m (100 ft)

Protection of wells:
impervious casing 30 cm (1 ft) above and 3 m (10 ft) below ground surface;
radius of concrete platform around well 1 m (3 ft 3 in);
radius of fenced area 50 m (160 ft);
bottom of cesspools and latrines 1.5-3 m (5-10 ft) above water table.

Water storage:
capacity sufficient for 1/2-1 day on the basis of the mean daily consumption.

Water quality:
total dissolved solids: less than 1500 mg/liters;
chlorides: less than 600 mg/liter;
coliform organisms: MPN1 1-10.

Latrines

Shallow trench latrine:
width 30 cm (1 ft) or as narrow as it can be dug;
depth 90-150 cm (3-5 ft);
length 3.0-3.5 m (10-12 ft) per 100 persons.

Deep trench latrine:
width 75-90 cm (2 ft 6 in-3 ft);
depth 1.8-2.4 m (6-8 ft);
length 3-3.5 m (10-12 ft) per 100 persons.

Bore hole latrine:
diameter 40 cm (16 in);
depth 5-6 m (16-20 ft);
1 for every 20 persons.

Refuse disposal

Trench:
width 1.5 m (5 ft);
depth 2 m (7 ft);
length 1 m (3 ft 3 in) per 200 persons, so that the trench is filled in one week;
depth of compact earth cover 40 cm (16 in);
time allowed for decomposition 4-6 months.

Food sanitation

Disinfection of eating utensils: boiling water for 5 minutes; or: chlorine solution, 100 mg/liter for 30 seconds; or; quarternary ammonium compounds, 200 mg/liter for 2 minutes.
Annex 5: Factors to be considered in relation to vaccination in emergencies

Prepared by Dr. Jos, Luis Zeballos, PAHO/WHO.

1. Susceptibility of the population

Level of immunity of the population (natural immunity or induced by earlier vaccination)
Age group at highest risk
Is the target population stable or migratory?
Is the disease controllable by vaccination?

2. Accessibility

Is the target population clustered or scattered?
Level of the population's acceptance of vaccination
Routes for reaching the population
Means of transport

3. Availability of vaccine

Quantity available for immediate use
Estimated time for delivery from warehouse to disaster area
Estimated time required to obtain vaccine from outside the country
Implications of procurement delays
Number of complete vaccine doses that can be administered from available supplies

4. Properties of vaccine

Real efficacy in interrupting disease transmission
Dose required for effective protection
Stability or lability of the vaccine
Time interval between doses

5. Available resources

Personnel trained in vaccine administration
Availability of refrigerators, freezers and insulated containers for vaccine storage and transport
Availability of supplies, syringes and sterile needles
Kind of fuel to be used for sterilization
Ice-making capability

6. Priorities and alternatives

Consideration of priority given to vaccination
Search for alternative ways to prevent or control the disease
Consideration of the operating cost as against other priorities
Annex 6: References

17. Nieburg, P. Changing morbidity and mortality patterns in Kampuchear refugee camps over three months. Field Services Division and Quarantine Division/ BE. Centers for Disease Control, Atlanta, Georgia. Presentation at the 29th Annual Epidemic Intelligence Service Conference, April 14-18, 1980.

31. Western, Karl A. Personal Communication.

32. Schoenberg, Lawrence B. Personal Communication.

45. Western, Karl A. Personal Communication.

